
NETWORK ANALYSIS TOOL

Release 2016

Prepared by:

Paul D. Thompson Consultant pdt@pdth.com Principal investigator:

John O. Sobanjo Florida State University jsobanjo@fsu.edu

February, 2016

Overview	1
Getting Started Setting Up the Analysis Specifying a Budget Setting Performance Targets Drilling Down	4 5 6 7 8
Worksheet Reference	9
Dashboard Control Panel Budget Pane Performance Target Pane Tradeoff Analysis Time Series Analysis Hot Spots Bridges Tableau Candidates Configuration	10 11 12 13 14 15 16 17 19 20 21
C	
Optimization Model Diminishing Marginal Returns Incremental Benefit/Cost Algorithm Example of IBC Algorithm	23 24 25
Performance Measures Percent Good/Excellent Health Index Life Cycle Benefit	26 27 28 29
Administration	30
Deployment Checklist Data management Customizing Worksheets	31 32 33

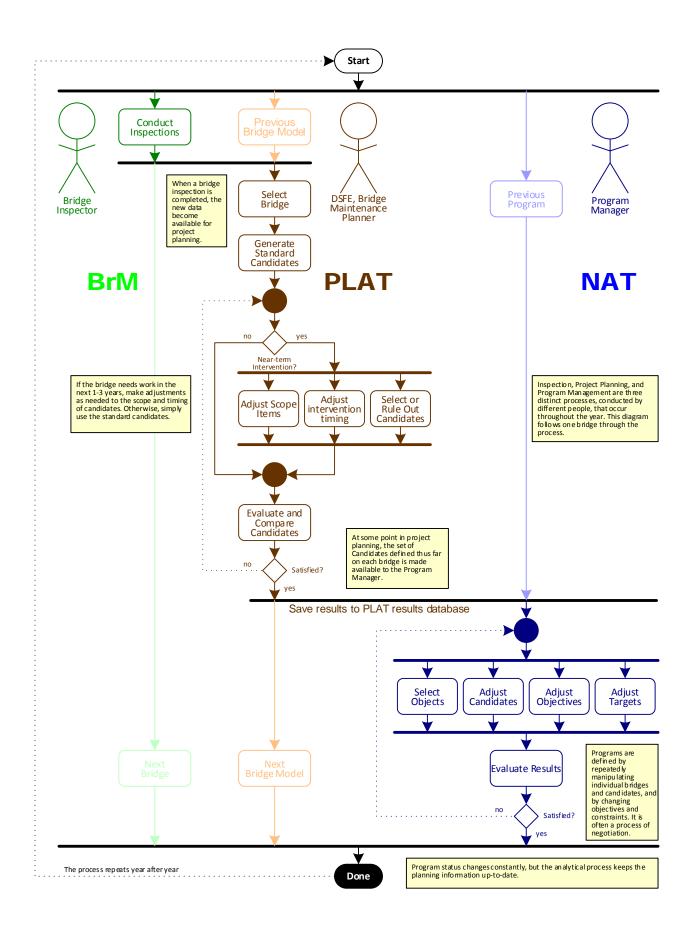
Overview

Since 1997 the Florida Department of Transportation has undertaken a number of necessary research and implementation activities to support the Pontis Bridge Management System, which has recently been renamed AASHTOWare Bridge Management (BrM). These activities include an upgrade of the biennial bridge inspection process to include element-level data; deployment of the Pontis/BrM software and database to district and central offices; customization of the administrative features of Pontis/BrM to support the FDOT work order process; development of new models for user costs, agency costs, deterioration probabilities, truck height and weight, and moveable bridge openings; and development of a Project Level Analysis Tool (PLAT) to apply these state-of-the-art tools to individual bridges. Pontis and BrM were designed as open systems to address the most generic bridge management functionality while leaving many opportunities for each bridge owner to customize it to satisfy unique agency requirements.

This Users Manual presents the Network Analysis Tool (NAT), a companion tool to PLAT intended to aggregate PLAT results into a network-wide analysis of costs and performance. NAT is intended to help District Structures and Facilities Engineers, Maintenance Planners, and Program Management staff with information for bridge programming and budgeting. It summarizes bridge needs on any subset of the bridge inventory, and shows how performance measures vary according to funding levels and allocation.

The activity diagram at the end of this section shows how NAT fits into an annual process which includes BrM and PLAT. The combination of PLAT and NAT serves a number of business processes as described in the following paragraphs.

Develop candidates. PLAT analyzes possible life cycle futures for a bridge, in terms of the scope and timing of candidate projects, and calculates costs and performance measures for these candidates. It allows the maintenance planner or engineer to define new candidates and analyze those as well. Toolbar buttons in PLAT can save the resulting candidates to a PLAT Results Database, where they become available for use in the NAT. Over the course of a year, engineers will review new inspection results from BrM, decide on candidates, and save these to the PLAT Results Database as needed.

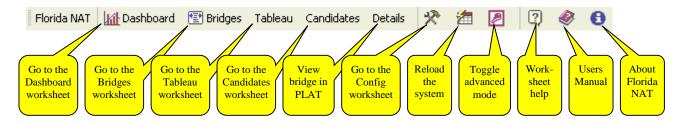

Prepare initial program. In any given year, most bridges in the inventory need little or no attention from engineers and planners, because they are in very good condition. PLAT has a feature to automatically analyze all the bridges in any subset of the inventory to create an initial program plan. After this initialization, work performed on a particular bridge in the PLAT and saved to the Analytical Database will over-ride the default candidates for that bridge. Bridges that were not visited in the PLAT will still have valid information in them that can be used by the NAT.

Define program. Program management is a process of reconciling competing objectives of resource utilization and performance, by means of selection and scheduling of actions. For most purposes, it is understood as a process of making choices of project scope and timing across an entire asset inventory or subset. However, for more senior managers and most elected officials, it is more often understood as a sort of economic supply curve -- a representation of how much performance can be purchased at various levels of investment. Program managers typically lack adequate time resources or expertise to evaluate engineering tradeoffs, but this does not mean such tradeoffs are unimportant. It merely means that the tradeoffs should already have been considered by engineers, and the results should be communicated to program managers in an efficient and consistent manner.

Development of a program begins with the selection of a sub-network and identification of the performance measure of interest. An automated process arranges the available candidates from PLAT in priority order according to each separate performance criterion and develops an economic structure of the performance/cost tradeoff. The inputs needed for this process are the costs and performance measures already calculated at the bridge level.

Analyze Tradeoffs. After the initial preparation, the Program Manager takes control and manipulates the budget constraint and performance targets. The Program Manager views a number of graphical presentations of tradeoffs and sensitivity analysis to acquire an understanding of what goals are achievable with available inputs. Adjustments to the inputs yield immediate feedback on forecast outputs and outcomes. This makes it easy to adjust budgets and performance targets and see the results in real-time.

Adjust Candidates. In addition to adjusting and viewing network level performance measures, the Program Manager typically seeks to view and adjust individual candidates. The non-engineer can still perform useful work at this level if the Maintenance Planner has provided a good set of alternatives. All such adjustments involve selecting or deselecting candidates, or making economic adjustments to reflect non-economic factors. For example, the manager might apply a penalty to a candidate that involves significant traffic disruption. A DSFE or Statewide Bridge Maintenance Planner may start the analysis from the network level – investigating the options for the bridge from network-level optimization standpoint — and then proceed down to the bridge-level to determine the appropriate courses of action. In this way it is possible to switch back and forth between bridge- and network-levels to fine-tune a program.



Getting Started

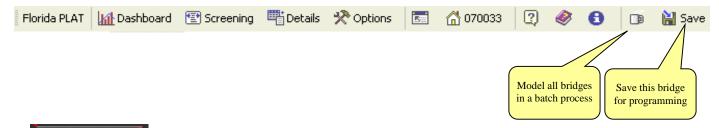
Welcome to the Florida Network Analysis Tool! This is an Excel model designed to work with BrM and the Project Level Analysis Tool (PLAT), using life cycle cost analysis to gain an understanding of the relationship between performance and funding for an inventory of bridges.

To use the system, you need Microsoft Excel 2003 or higher, and Adobe Acrobat Reader 4 or higher (just for the Users Manual). Your BrM administrator should have posted an Excel template file and a Users Manual in the directory where your Microsoft Office templates normally are found, and should have sent you a Windows shortcut file for launching the system. If this is not the case, you can prepare the system for normal use by consulting the chapter on <u>Administration</u>.

For most purposes you'll work on the <u>Dashboard</u> worksheet, occasionally consulting the <u>Bridges</u>, <u>Tableau</u>, and <u>Candidates</u> worksheets when you need more detail. You'll navigate the system using the toolbar, which looks like this:

In Excel 2007 and higher, the toolbar is found on the Add-Ins ribbon.

To learn how the network optimization works, see the chapter, <u>Optimization Model</u>. A set of quick lessons is provided first, to get you started in understanding and using the tool effectively:

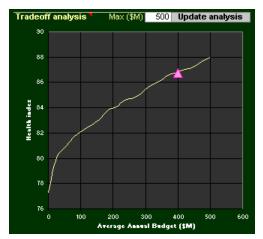

Setting up the analysis Specifying a budget Setting performance targets Drilling down

We hope you'll find the tool indispensable as you plan your program and budget.

Setting Up the Analysis

The NAT depends for its inputs on a separate system, the Florida Project Level Analysis Tool (PLAT). PLAT conducts a life cycle cost analysis of each bridge, predicting <u>performance measures</u> that illustrate the tradeoff between scoping and timing of work. At the network level, reducing the budget causes work on some of the bridges to be postponed. Those bridges still need work and will incur expenditures eventually, but their scope may change because of further deterioration. NAT uses this information to predict what will happen at the network level as funding is regulated.

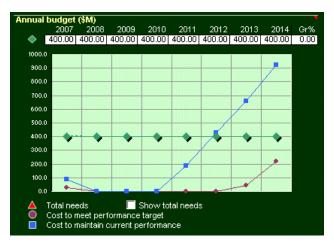
Before running NAT, you'll need to make sure you have used PLAT to update the project-level analysis results, which are stored in a <u>PLAT Results Database</u>. This should be checked at least once a year. The right-most toolbar buttons on the PLAT toolbar are used for this purpose, as indicated below. See the later chapter, <u>Administration</u>, and the separate PLAT Users Manual for more information.


	'k subse	t 🎙
StHwy	Cust	Туре
- All -	- All -	- Al -
On	State	Beams 🎙
Off	Tpk 🚬	Slabs
	County	Lg Fixed
	Local	Moveable
	Fed	Culverts
	Other 🎙	Other
		Major
		Minor 📑
District	FuncCl	Action
- All -	- All -	- All -
Dist 1	FC 01	ElRepl
Dist 2	FC 02	Rehab
Dist 3	FC 06	Repair
Dist 4	FC 07	Maint 📑
Dist 5	FC 08	Improv 🎙
Dist 6	FC 09 🖲	StRepl 3
Dist 7	FC 11	Painting
Dist 8	FC 12	
	FC 14	
	FC 16	
	FC 17	
	FC 19	
5000 h	Advance	
5299 bri	idges sele	ected
Graph s	settings	
	rmance N	<i>leasure</i>
	nt good/e	
	Health inc	
	int health e cγcle b	
LII	е сусіе рі	
	series a	
	port	Breakdn
	eakdown	StHwy
	eakdown	Cust
	-G-F-P	Туре
	nditions	District
Cost by	/ Action	FuncCl

Once the PLAT Results are ready, you'll need to decide what parts of the inventory to analyze. This is done in the <u>Dashboard Control Panel</u>, shown at left and described below.

You'll also need to select a <u>performance measure</u>, which determines how candidate investments are prioritized. Naturally, whichever measure of performance you use for priority-setting, is the one that will be improved the most in the <u>optimization</u>. The best way to understand the differences that your choice of performance measure will make, is to try out all the possibilities to see what interventions are selected.

Once you have made these choices, you are ready to work with budgets.


Specifying a Budget

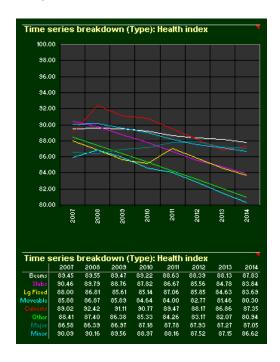
From the perspective of an economic model, any budget level is conceivable, even zero. But the more money you put into a program, the better will be the <u>performance</u> you get out. Allowing an inventory to deteriorate will gradually increase the overall needs, raising the future cost of keeping the transportation network in service. The budget analysis helps you attach hard numbers to this tradeoff and thought process.

One way to get a quick idea of how funding affects performance, is to use the <u>Dashboard</u>'s <u>Tradeoff Analysis</u> graph, shown at left. Set a maximum budget level, higher than you think would ever happen, and if necessary, click the "Update analysis" button to cause the program to calculate and plot a series of 20 different annual budget levels. You can pick a point on this graph as a starting place for your own budget analysis.

The <u>Budget Pane</u> (right) on the Dashboard gives you several tools for entering and evaluating annual funding levels. Each time you make a change in the budget, the Dashboard updates itself automatically. The first year budget and the growth rate work together to set all the annual budgets all at once. You can see on the graph the cost of maintaining current performance and the cost of satisfying a performance target.

Setting Performance Targets

Perform		raata	Upalth i	ndau					_
Periorii	2007	2008 -	2009	2010	2011	2012	2013	2014	Gr%
•	87.00	86.91	86.83	86.74	86.65	86.57	86.48	86.39	-0.10
100.00								<u> </u>	
98.00	-								
96.00					-				
94.00							-	-	
92.00									
90.00	+	-	_						
88.00						-			
86.00	-				-	•			
84.00									
82.00									
80.00									
A	Performs	ance if al	I needs r	net					
			inable at						
			nce leve						
	Performa	ance atta		budget					


You can evaluate the performance of your program and set targets using the <u>Performance Target Pane</u> on the <u>Dashboard</u> (left). Targets don't change what the optimization model decides to program, but they do give you useful feedback on the <u>Budget Pane</u>, in terms of the cost to achieve the given target.

You can compare related performance measures and see how they vary in different parts of the network, using the <u>Time Series Analysis</u> (below). The bottom part of the <u>Control Panel</u> has buttons you can click to control the choice of data displayed in this graph and table.

The Dashboard also has a <u>Hot Spot</u> chart (right), which gives you a multi-dimensional view of current condition of your bridge inventory.

Based on the Time Series Analysis and Hot Spot chart, you may decide to focus on a portion of your inventory to work on just the performance there. You can do this by making selections from the <u>Control Panel</u> to specify which bridges you want to analyze. Then you can set budgets and performance targets for just that more restricted group of bridges.

Drilling Down

Network-Level Analysi Bridges	Show excluded bridges Show do-nothing bridges															
Please click the button	s at left to operate on each bridge															
Onl Cand		State.			Struc	<u>Func</u>		Beplace <u>Cost</u>	TEV	Paint. TEV	<u>CEV</u>	Paint CEV	<u>Health</u>	<u>Paint</u> <u>Health</u>		lnsr. Utility
Off Year Bridge II		Hwy	Dist	Cust	Type	<u>Class</u>	Major	(\$000)	(\$000)	(1000)	(10000)	(1000)	Index	Index	Utility	Cost
On 2008 <u>010032</u>	US 41 NB OVER ALLIGATOR C	1	1	1	2	9	2	469	4947	0	4484	0	90.6	0.0	100.0	308.5
On 2007 010033	US 41 NB OVER OYSTER CK.	1	1	1	2	9	2	182	3296	0	3168	0	96.1	0.0	100.0	18089.7
On 2012 010035	EL JOBEAN BRIDGE EB	1	1	1	1	3	2	3124	24643	6	16801	6	68.2	100.0	100.0	46.3
On 2008 010042	US-41 OVER SUNSET CANAL	1	1	1	2	9	2	623	8076	0	6902	0	85.5	0.0	100.0	232.3
On 2009 010045	US 41 OVER MORNING STAR CANAL	1	1	1	2	9	2	866	9777	0	8428	0	86.2	0.0	100.0	167.1
On 2007 010055	US 41 SB OVER ALLIGATOR C	1	1	1	2	9	2	524	5510	0	5124	0	93.0	0.0	100.0	18553.6
On 2007 010056	US 41 SB OVER OYSTER CK	1	1	1	2	9	2	316	4093	0	3977	0	97.2	0.0	100.0	11395.1
On 2007 010065	AIRPORT ROAD OVER I-75	1	1	1	1	4	2	830	8659	5611	7947	5273	91.8	34.0	100.0	5224.5
On 2010 010066	S JONES LOOP RD/ 1-75	1	1	1	1	6	2	1121	11800	7312	10782	6432	91.4	88.8	100.0	129.1
On 2011 010063	1-75 SB/ALLIGATOR CREEK	1	1	1	1	1	2	1336	16448	8970	12584	6252	76.5	69.7	100.0	108.3
On 2010 010070	1-75 NB /ALLIGATOR CREEK	1	1	1	1	1	2	1127	13718	7478	10603	5212	77.3	69.7	100.0	128.4
On 2011 010071	1-75 SB OVER KINGS HIGHWAY	1	1	1	1	7	2	1183	8640	0	8414	0	97.4	0.0	100.0	122.4
On 2010 010072	I-75 NB OVER KINGS HIGHWAY	1	1	1	1	7	2	1183	8643	0	8410	0	97.3	0.0	100.0	122.4
On 2009 010073	1-75 SB / JONES LOOP RD	1	1	1	1	1	2	782	10424	5100	8992	4315	86.3	84.6	100.0	185.0
On 2009 010074	1-75 NB / JONES LOOP RD	1	1	1	1	1	2	782	10431	5100	9435	4314	90.5	84.6	100.0	185.0
On 2008 010078	1-75 SB/SANDY HARTMANS C	1	1	1	2	1	2	398	4988	0	4331	0	86.8	0.0	100.0	363.5
On 2010 010080	1-75 SB/RIVERSIDE DR & RR	1	1	1	1	1	2	1011	7288	0	7039	0	36.6	0.0	100.0	143.2
On 2010 010081	1-75 NB/RIVERSIDE DR & RR	1	1	1	1	1	2	1011	8134	0	7894	0	97.0	0.0	100.0	143.2
On 2009 010082	1-75 SB / TUCKERS GRADE	1	1	1	1	1	2	788	10074	5273	8951	4757	88.9	90.2	100.0	183.6
On 2009 010083	1-75 NB / TUCKERS GRADE	1	1	1	1	1	2	792	10083	5273	9022	4836	89.5	91.7	100.0	182.7
On 2011 010093	US 17 OVER SHELL CREEK	1	1	1	2	2	2	1347	8897	0	7092	0	79.7	0.0	100.0	107.4
On 2007 010095	US 17 SHELL CK N SLOUGH	1	1	1	2	2	2	465	4508	0	3841	0	85.2	0.0	100.0	6794.3
On 2010 010038	SR 776 GOTTFRIED CREEK	1	1	1	1	10	2	1021	8580	0	7728	0	90.1	0.0	100.0	141.7
O. 0011 010100	OD 776 OUED AINOED ODEEK	· ·				40	<u> </u>	4706	46.04.4		11010		00.0		400.0	04.0

Network-Le Optim	vel Analysis IIZation	n Tabl	eau			🔽 Expa	nded
This worksh	eet is not inte	ended to be (dited and sh	ould not be r	eferenced b	oy formulas. C	lick any t
2007 bridges	Action	Cost	CumCost	IUC	2008 bridges	Action	с
870657	200	100	100	334.00	140024	100	263
870269	200	400	500	83.50	870407	100	52
870010	100	1300	1800	58.62	770078	100	283
170060	300	1000		52.10	720555	200	280
879003	600	2600	4400	48.35	750604	300	1426
083001	100	13600		47.38	100588	100	241
100028	100	419400	423800	47.27	<u>330488</u>	300	630
150046	600	543200	967000	40.48	<u>330483</u>	300	630
340048	100	10100	977100	37.33	870792	300	418
<u>100337</u>	300	3300	980400		<u>160250</u>	100	504
780017	100	15800	996200	36.05	930487	300	412
030086	100	33300		35.65	164506	300	1230
720138	100	18300	1014500	34.63	<u>330486</u>	300	413
879004	300	2700	1017200	34.19	160268	100	264
730004	600	199400	1216600	31.92	870589	300	390
050031	100	900		31.22	330525	300	794
720321	100	21200	1237800	31.03	720575	200	242
870785	100	2300	1240100	30.83	860625	200	446
870154	100	2900	1243000	30.41	870590	300	390
870002	100	1100	1244100	30.36	750485	200	901
030095	100	2300		30.22	100513	300	225
700160	100	3100	1247200	30.19	770085	100	178
720338	100	36600	1283800	29.99	750548	300	215
720220	100	37000	1320800	09.74	750547	300	203

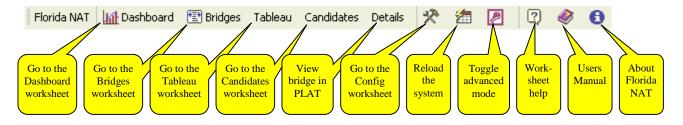
NAT has features to let you look down into the <u>optimization</u> to see how it selects and prioritizes bridges, and what it does to each individual bridge. You can see the list of included bridges on the <u>Bridges</u> worksheet (above), which reflects the choices you made on the <u>Control Panel</u> and also lets you exclude individual bridges. You can sort the bridges any way you like to understand what is included in the list.

To see the priority ordering of bridges in the optimization, use the <u>Tableau</u> worksheet (left). This shows, for each year of the program, how each bridge stacks up against all the other bridges. From the Bridges or Tableau worksheets, you can navigate to the <u>Candidates</u> worksheet for more detail about the results for each bridge. You can also use the Details button on the toolbar to bring up the bridge in the PLAT to understand how it was analyzed and see the scope vs. timing tradeoff.

Worksheet Reference

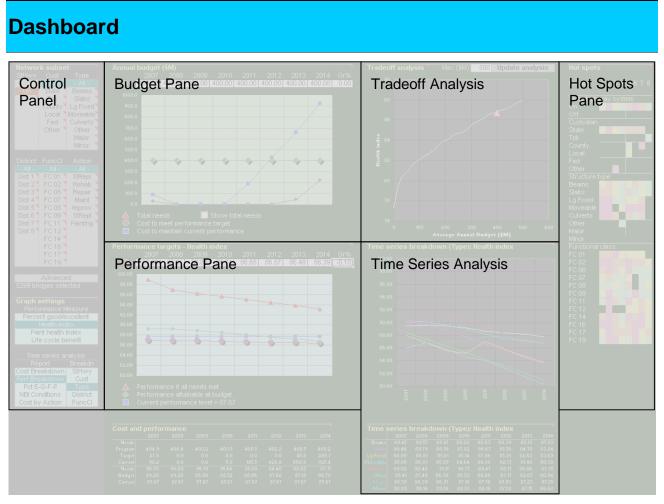
The network analysis tool is an Excel workbook file containing 5 worksheets with user information. All of them are available by clicking in the toolbar. (The Diagnostics and Scratch worksheets are for internal use by the software.) The worksheets are:

Dashboard


Bridges

<u>Tableau</u>

Candidates


Configuration

Most of the time you will navigate through the system using the toolbar, which looks like this:

In Excel 2007, the toolbar is found on the Add-Ins ribbon. Advanced mode is generally used only if you want to <u>customize</u> the workbook or if you need access to Excel toolbars. Most of the time you'll want Normal mode instead.

NAT keeps track of one bridge as the "current bridge". Initially this is the first bridge listed on the Bridges worksheet. If you click a bridge in the Bridges worksheet or the Tableau worksheet, then that becomes the current bridge. Subsequently, clicking the Candidates button will show the candidates on that bridge, and clicking the Details button will show that bridge in the PLAT.

The Dashboard provides most of the controls and outputs of the system in one convenient layout. This makes it quick and easy to work with any subset of the inventory, any <u>performance measure</u>, funding constraints, and performance targets. The diagram above shows the sections of the Dashboard worksheet, which are:

- <u>Control Panel</u> By clicking buttons in this section you can choose a subset of the inventory, select a performance measure, and control what is plotted in the time series pane.
- <u>Budget Pane</u> This is where you set budget constraints and see the funding requirements for various performance targets.
- <u>Tradeoff Analysis</u> A convenient way to see how changes in budget affect the performance level at the end of the program horizon, to help in setting the budget constraints.
- <u>Performance Target Pane</u> This is where you set performance targets and see what performance is attainable each year.
- <u>Time Series Analysis</u> Here you can see the changes in cost and performance each year, and make comparisons between different performance measures or different subsets of the inventory.
- <u>Hot Spots Pane</u> Using color codes, this section shows the parts of the inventory having the best and worst performance.

In addition, just below the Performance Pane is a table of the costs and performance data plotted in the Budget and Performance Panes. Just to the right of the Hot Spots graph (not shown in the diagram above) you can find the numbers that are plotted in the Tradeoff Analysis.

Control Panel

	k subse	
StHwy	Cust	Туре
- All -	- All -	- All -
On	State	Beams
Off	Tpk 📑	Slabs 🚬
	County	Lg Fixed
	Local 🎙	Moveable
	Fed	Culverts
	Other 🎙	Other ষ
		Major ষ
		Minor 📑
District	FuncCl	Action
- All -	- All -	- All -
Dist 1	FC 01	ElRepl 🐧
Dist 2	FC 02 🎙	Rehab ষ
Dist 3	FC 06 T	🛛 Repair 🍼
Dist 4		Maint
Dist 5	FC 08	Improv ষ
Dist 6	FC 09 T	StRepl 3
Dist 7	FC 11	Painting
Dist 8	FC 12	-
	FC 14 FC 16	
	FC 17	
	FC 19	
	1010	
	Advance	
5299 bri	idges sele	cted
Graph	settings	
	irmance N	leasure
	nt good/e	
	Health ind	
	nt health i	
	e cycle be	
	series ar port	nalysis Breakdn
	pon sakdowni	StHwy
	akdown	Cust
	-G-F-P	
	-G-F-P nditions	Type District
		FuncCl
Cost by	/ Action	Puncel

The Control Panel governs what is displayed on the rest of the <u>Dashboard</u>. By clicking on the buttons in this area, you set the subset of the inventory to be analyzed, the performance measure used for optimization, and the display of the time series analysis.

NETWORK SUBSET

The upper half of the Control Panel is devoted to choosing a subset of the inventory. There are six dimensions from which to make selections:

State Highway System – indicates ownership. A bridge is on the state highway system if its NBI owner code (NBI 21) is 1 (state highway agency), 31 (state toll authority), or 33 (turnpike); with the exception of District 6 bridges having owner code 31.

Custodian – an indication of maintenance responsibility. A bridge is in "State" custody if its NBI item 21 code is 1, 11, 21, or 31. It is "Local" if NBI 21 is 3, 4, 12, 25, or 32.

Structure Type – The choices here depend on NBI item 43b: Beams (2,3,4,5,6,7,22), Slabs (1), Large fixed bridges (9,10,11,12,13,14,21), Moveable (15,16,17), and Culverts (19). A bridge is considered "Major" if its deck area is at least the deck area threshold given on the Configuration worksheet; otherwise it is considered "Minor".

District – The FDOT district number.

Functional Class – Functional classes as indicated.

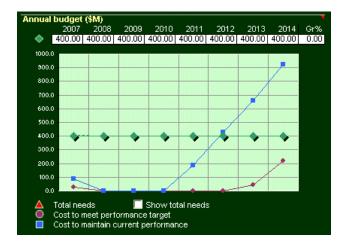
Action Category – Classification of action categories as defined in the PLAT: Element Replacement, Rehabilitation, Repair, Maintenance, Functional Improvements, Structure Replacement, and Painting.

Cost by Action FuncC In each case you can choose "All" to refrain from subsetting the inventory on that dimension. You can make multiple selections from a list in order to include more than one category. If you make selections from more than one list, only bridges that qualify on every list will be included.

NAT has a feature to limit its analysis to the State Highway System and/or just one district. This is specified on the <u>Configuration</u> worksheet. This feature makes the system load faster. If either of these is specified, the Control Panel indicates this by showing the corresponding list in gray with a red highlighted selection.

If the six lists don't give you the subset you want, NAT has the ability to accept any SQL query based on any columns in the BrM bridge, userbrdg, roadway, or inspevnt tables. Simply click the Advanced button to enter your query. Here's an example query: "bridge.county='015' and roadway.adttotal>1000 and inspevnt.dkrating<'6".

Whenever you change your subset settings, the Dashboard shows just under the Advanced button how many bridges you have selected. You can see the selected list on the <u>Bridges</u> worksheet.


GRAPH SETTINGS

In the <u>Performance Measure</u> list, you must select one measure to be used in the <u>network optimization model</u> and in the tables and graphs on the <u>Dashboard</u>.

TIME SERIES ANALYSIS

From the Report list, select one of the standard time series report layouts. For the two Breakdown reports, you can also choose how you want the subset of bridges broken out in the <u>time series analysis</u>.

Budget Pane

Use this section of the <u>Dashboard</u> to set the budget constraints for your analysis. The graph shows the following information:

Green: The budget constraints you entered are shown with a solid green line. The amount programmed by the <u>model</u> is shown with a dashed line. Usually these lines are very close together so only the budget is visible. However it is possible for the amount programmed to be either above or below the budget. It can be above the budget because the optimization model programs interventions to use all the available money, and the last intervention might go a bit over the budget. It can be below the budget if there weren't enough needs to use up all the available funds.

Red: Total needs, meaning all the work that can possibly be programmed on all the bridges. This is usually a very large number that makes the rest of the graph hard to see, so a check box is provided to turn this line on or off.

Purple: Cost to meet the performance target, which is set in the Performance Target Pane.

Blue: Cost to maintain the current performance of the network, which is shown in the <u>Performance Target</u> <u>Pane</u>.

The optimization model works best if you omit inflation in the budget constraints. This decision is made in the PLAT by specifying a real discount rate that also excludes inflation. However, you may still want to model a uniformly increasing or decreasing level of real funding. This can be done by specifying a growth rate in the upper right corner of the Budget Pane. When you enter this growth rate (expressed in positive or negative percent), the budgets for each year are recomputed automatically based on the first-year budget. Similarly, if a growth rate is specified, entering a budget in the first year will cause all the other years' budgets to be computed automatically.

You can leave any or all years' budget constraints blank to model an unlimited budget.

If you change the inventory subset in the <u>Control Panel</u>, you will also probably need to change the budget constraints.

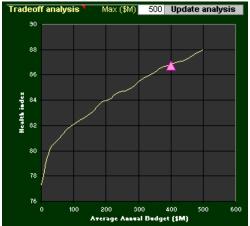
Performance Target Pane

The Performance Target Pane allows you to set annual goals for <u>performance</u> of the subset of bridges you selected. These targets don't affect what work is programmed by the <u>model</u>. The ability to reach a performance target in a given year depends on what was programmed by the model in earlier years of the analysis. The graph shows the following data:

Purple: The performance target you specified.

Red: Performance that would be achieved if all needs are met in a given year (i.e. no funding constraint), depending on what was programmed in earlier years of the analysis. This is the maximum possible level of the performance target.

Green: The performance achievable at the funding level set in the <u>Budget Pane</u>. This is the performance resulting from the work programmed by the model.

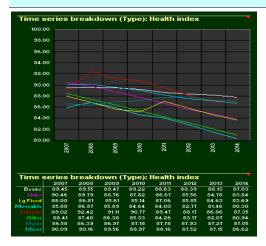

Blue: Current performance of the subset of bridges. The graph legend shows the numerical value. This performance number is computed as the forecast performance at the beginning of the program horizon.

You can model a uniformly increasing or decreasing performance target. This can be done by specifying a growth rate in the upper right corner of the Performance Target Pane. When you enter this growth rate (expressed in positive or negative percent), the targets for each year are recomputed automatically based on the first-year target. Similarly, if a growth rate is specified, entering a target in the first year will cause all the other years' targets to be computed automatically.

You can leave any or all years' targets blank to turn off the target analysis.

If you change the inventory subset or the choice of performance measure in the <u>Control Panel</u>, you will probably need to change the performance targets as well.

Tradeoff Analysis

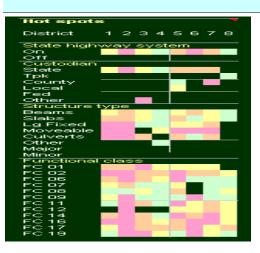

This graph helps you set your <u>budget constraints</u> by showing you what maximum <u>performance</u> is achievable at the end of the program horizon at any uniform annual budget level. It is a sort of supply curve for performance of the inventory subset you are analyzing.

To produce this graph, the <u>model</u> repeats itself 20 times for uniform increments of funding from zero to the maximum that you enter in the top center of the pane. Since the computations are time-consuming, they don't update automatically. If a change in <u>Control Panel</u> settings invalidates the graph, it is merely erased. To recompute it, simply click the "Update analysis" button or change the maximum budget level.

Based on the settings in the <u>Budget Pane</u>, the red triangle shows the forecast performance of the program with the funding levels given.

If you would like to see the numbers that are plotted in this graph, simply scroll the <u>Dashboard</u> to the right, past the <u>Hot Spots Pane</u>.

Time Series Analysis



This graph gives you several options to see how costs and performance change over time. You can compare related sets of <u>performance measures</u>, or compare different portions of the <u>inventory subset</u> you selected.

Lines in this graph are color-coded to the rows of the table just below it. The table also shows the numbers plotted in the graph.

The bottom portion of the <u>Control Panel</u> determines what information is displayed in this pane.

Hot Spots

This graphic display breaks up the inventory subset you specified in the <u>Control Panel</u>, comparing performance according to the selected <u>performance measure</u>. Each area of the pane is a 2dimensional breakdown by district and one other classification of bridges.

Within each area, the cells are sorted by performance in the first year of the program horizon. The best 25% of the cells are coded green, the next 25% yellow, then orange, then red for the worst 25%. Thus, the areas of the pane that are reddest have the worst performance.

If a cell in any of the areas is blank, this indicates there are no bridges in that cell in the subset you selected. So if you selected district 1, for example, then only one column will be colored.

Bridges

Network-Level Analysis	🗹 Show excluded bridges															
Bridges	Show do-nothing bridges															
Dilages	Show do-nothing bridges															
Please click the buttons	at left to operate on each bridge														i .	l .
								Replace.		Paint		Paint.		Paint		Incr
Onl Cand		State			Struc	Func		Cost	TEV.	TEV.	CEV.	CEV.	Health.	Health.		Utility
Off Year Bridge ID	Structure Name	Hwy	Dist	Cust	Type	Class	Major	(\$000)	(\$000)	(\$000)	(\$000)	(1000)	Index	Index	Utility	Cost
On 2008 010032	US 41 NB OVER ALLIGATOR C	1	1	1	2	э	2	463	4947	0	4484	0	90.6	0.0	100.0	308.5
On 2007 010033	US 41 NB OVER OYSTER CK.	1	1	1	2	9	2	182	3296	0	3168	0	96.1	0.0	100.0	18089.7
On 2012 010035	EL JOBEAN BRIDGE EB	1	1	1	1	3	2	3124	24643	6	16801	6	68.2	100.0	100.0	46.3
On 2008 010042	US-41 OVER SUNSET CANAL	1	1	1	2	9	2	623	8076	0	6902	0	85.5	0.0	100.0	232.3
On 2009 010045	US 41 OVER MORNING STAR CANAL	1	1	1	2	9	2	866	9777	0	8428	0	86.2	0.0	100.0	167.1
On 2007 010055	US 41 SB OVER ALLIGATOR C	1	1	1	2	9	2	524	5510	0	5124	0	93.0	0.0	100.0	18553.6
On 2007 010056	US 41 SB OVER OYSTER CK	1	1	1	2	9	2	316	4093	0	3977	0	97.2	0.0	100.0	11395.1
On 2007 010065	AIRPORT ROAD OVER I-75	1	1	1	1	4	2	830	8659	5611	7947	5273	91.8	94.0	100.0	5224.5
On 2010 010066	S JONES LOOP RD/ 1-75	1	1	1	1	6	2	1121	11800	7312	10782	6492	91.4	88.8	100.0	129.1
On 2011 010063	1-75 SB/ALLIGATOR CREEK	1	1	1	1	1	2	1336	16448	8970	12584	6252	76.5	69.7	100.0	108.3
On 2010 010070	1-75 NB /ALLIGATOR CREEK	1	1	1	1	1	2	1127	13718	7478	10603	5212	77.3	69.7	100.0	128.4
On 2011 010071	I-75 SB OVER KINGS HIGHWAY	1	1	1	1	7	2	1183	8640	0	8414	0	97.4	0.0	100.0	122.4
On 2010 010072	I-75 NB OVER KINGS HIGHWAY	1	1	1	1	7	2	1183	8643	0	8410	0	97.3	0.0	100.0	122.4
On 2009 010073	I-75 SB / JONES LOOP RD	1	1	1	1	1	2	782	10424	5100	8992	4315	86.3	84.6	100.0	185.0
On 2003 010074	1-75 NB / JONES LOOP RD	1	1	1	1	1	2	782	10431	5100	9435	4314	30.5	84.6	100.0	185.0
On 2008 010078	1-75 SB/SANDY HARTMANS C	1	1	1	2	1	2	398	4988	0	4331	0	86.8	0.0	100.0	363.5
On 2010 010080	1-75 SB/RIVERSIDE DR & RR	1	1	1	1	1	2	1011	7288	0	7039	0	96.6	0.0	100.0	143.2
On 2010 010081	1-75 NB/RIVERSIDE DR & RR	1	1	1	1	1	2	1011	8134	0	7894	0	97.0	0.0	100.0	143.2
On 2009 010082	1-75 SB / TUCKERS GRADE	1	1	1	1	1	2	788	10074	5273	8951	4757	88.9	90.2	100.0	183.6
On 2009 010083	1-75 NB / TUCKERS GRADE	1	1	1	1	1	2	792	10083	5273	9022	4836	89.5	91.7	100.0	182.7
On 2011 010033	US 17 OVER SHELL CREEK	1	1	1	2	2	2	1347	8897	0	7092	0	79.7	0.0	100.0	107.4
On 2007 010035	US 17 SHELL CK N SLOUGH	1	1	1	2	2	2	465	4508	0	3841	0	85.2	0.0	100.0	6794.3
On 2010 010038	SR 776 GOTTFRIED CREEK	1	1	1	1	10	2	1021	8580	0	7728	0	90.1	0.0	100.0	141.7
0. 0011 010100	2D 776 OVED AIMOED ODEEK	•			•	10	2	4706	16044	0	14:040	0	006	0.0	100.0	01.0

Whenever you make a change in the <u>Control Panel</u> to specify a subset of the bridge inventory to be analyzed, the NAT filters the list of bridges according to your criteria. You can see which bridges it selected on the Bridges worksheet. This worksheet presents one row per bridge, with a variety of data in the columns for each bridge. The features available here include:

- Click a bridge ID (third column) to see that bridge in the PLAT. If you don't have the PLAT workbook open, Excel will open it for you.
- Click a candidate year (second column) to see the bridge on the <u>Candidates</u> worksheet. This shows you the detailed results of the <u>network optimization</u> and how it affects this bridge.
- Click in the on/off column to determine individually which bridges are included in the analysis. This further reduces the size of the inventory subset you specified on the <u>Control Panel</u>.
- Click a column heading to sort the list by that column. Click it again to reverse the order.
- You can use any feature of Excel to manipulate and analyze the list.
- You can add, move, or remove columns in the list.

The two checkboxes at the top of the worksheet shorten the list by excluding certain bridges. If you check "show excluded bridges", the list will include even the bridges you turned off in the on/off column. They still will not be included in the analysis, however. It is useful to be able to see these in case you want to turn any of them back on.

If you check "show do-nothing bridges", the list will show all bridges considered in the analysis, even the ones where no work was programmed.

If you have made any changes on the Control Panel or the <u>Configuration</u> worksheet that affect which bridges are selected, the Bridges worksheet will automatically reload next time you go to it. If you're in a hurry and don't want it to finish reloading, simply click the Cancel button on the "Working" dialog if it appears.

In addition to columns from the BrM bridge, userbrdg, roadway, and inspevnt tables, a variety of calculated columns may appear in the worksheet. Here is a list of the possibilities.

include	Flag indicating whether to include the bridge in the analysis. Must be column A of the worksheet.
candyear	Year of the intervention. Must be column B of the worksheet.
brkey	Bridge key value, as identified in BrM. Must be column C of the worksheet
platfile	Full path name of the PLAT file last used to generate candidates for this bridge
statehwy	Classification of on/off the state highway system (numbered in the order they appear on the Dashboard Control Panel, starting with 1)
district	Classification of district (numbered in the order they appear on the Dashboard Control Panel, starting with 1)
custodian	Classification of custodian (numbered in the order they appear on the Dashboard Control Panel, starting with 1)
structype	Classification of structure type (numbered in the order they appear on the Dashboard Control Panel, starting with 1)
funcclass	Classification of functional class (numbered in the order they appear on the Dashboard Control Panel, starting with 1)
major	1 for major structures, 2 for minor structures
replcost	Replacement cost of the bridge
tev	Total element value, in the health index computation
pnttev	Total element value of painted steel elements, in the health index computation
cev	Current element value, in the health index computation
pntcev	Current element value of painted steel elements, in the health index computation
health	Health index of the bridge
pnthealth	Health index of painted steel elements on the bridge
deck	NBI deck condition rating estimated for the first year of the program
supr	NBI superstructure condition rating estimated for the first year of the program
subs	NBI substructure condition rating estimated for the first year of the program
culv	NBI culvert condition rating estimated for the first year of the program
candtype	Name of the candidate as determined in PLAT
initcost	Initial cost of the intervention
agcyben	Agency benefit of the intervention
userben	User benefit of the intervention
lccben	Total life cycle benefit of the intervention
actcat	Action category of the most expensive component of the intervention
paint	Indicator of whether the bridge has any painted steel elements (yes/no)
utility	Value of the performance measure selected on the dashboard, for this bridge
iuc	Incremental utility/cost ratio

Tableau

Network-L	evel Analysis														
Optin	nizatio	n Tabl	eau			🔽 Expar	nded								
This works	heet is not in	ended to be	edited and sl	hould not be r	referenced t	oy formulas. Cli	ick any bridg	je ID to see it:	s details.						
2007					2008					2009					201
bridges	Action	Cost	CumCost	IUC	bridges	Action	Cost	CumCost	IUC	bridges	Action	Cost	CumCost	IUC	brie
870657	200	100	100	334.00	140024	100	26300	26300	11.24	750113	100	28900	28900	3.52	23
870269	200	400	500	83.50	870407	100	52100	78400	9,39	100084	100	132800	161700	3.04	870
870010	100	1300	1800	58.62		100	28300	106700	8.08	350037	100	51900	213600	2.55	100
170060	300	1000		52.10		200	28000	134700	8.02	750133	600	876600	1030200	2.25	500
879003	600	2600	4400	48.35	750604	300	142600	277300	7.93	750227	600	876600	1966800	2.25	100
083001	100	13600		47.38	100588	100	24700	302000	7.63	710063	600	470500	2437300	2.24	<u>610</u>
100028	100	419400	423800	47.27	<u>330488</u>	300	63000	365000	7.26	720063	600	5189300	7626600	2.24	<u>610</u>
150046	600	543200	967000	40.48	<u>930489</u>	300	63000	428000	7.24	720910	600	285300	7911900	2.24	320
340048	100	10100	977100	37.33	870732	300	41800	469800	7.23	730015	600	884000	8795900	2.23	150
100337	300	3300	980400	37.27	160250	100	50400	520200	6.90	300054	600	793400	9589300	2.23	170
780017	100	15800	996200	36.05	330487	300	41200	561400	6.88	750112	100	50500	9639800	2.22	320
030086	100	33300		35.65	164506	300	123000	684400	6.85	750206	600	1130000	10770k	2.22	720
720198	100	18300	1014500	34.63	<u>930486</u>	300	41300	725700	6.83	890061	600	833100	11603k	2.22	530
879004	300	2700	1017200	34,19	160268	100	26400	752100	6.79	360341	600	266100	11869k	2.22	060
730004	600	199400	1216600	31.92	870583	300	39000	791100	6.79	160064	600	1064300	12934k	2.22	700
050031	100	900		31.22	330525	300	79400	870500	6.70	160063	600	1057900	13992k	2.22	720
720321	100	21200	1237800	31.03	720575	200	24200	894700	6.63	470014	600	654300	14646k	2.22	030
870785	100	2300	1240100	30.83	860625	200	44600	939300	6.63	030197	600	635700	15282k	2.22	750
870154	100	2900	1243000	30.41	870530	300	39000	978300	6.58	780105	600	434500	15716k	2.22	550
870002	100	1100	1244100	30.36	750485	200	90700	1069000	6.56	720068	600	5189300	20906k	2.21	720
030035	100	2300		30.22	100513	300	22500	1091500	6.36	170320	600	455200	21361k	2.21	750
700160	100	3100	1247200	30.19	770085	100	17900	1109400	6.35	720183	600	379700	21741k	2.21	520
720338	100	36600	1283800	29,99	750548	300	21900	1131300	6.23	100158	600	416300	22157k	2.21	150
720230	100	37000	1320800	23.74	750547	300	20900	1152200	6.21	720306	600	379700	22537k	2.21	160
330009	600	2460000	3780800	29.57	930494	300	16900	1169100	6.01	860563	600	2738100	25275k	2.21	360
080047	100	12400	3793200	29.44	860624	200	40800	1203300	5.90	370012	600	718700	25993k	2.20	870
870057	100	1500	3794700	29.40	160267	300	15000	1224900	5.88	720246	100	72800	26066k	2.20	100
300002	100	500		29.40	160238	200	43000	1267900	5.88	750141	600	475800	26542k	2.20	750
380014	100	1100		29.18	720553	200	154,900	1422800	5.83	730054	600	604300	27147k	2.20	270
100069	100	1200	3795900	29.00		300	10100	1432900	5.82	750165	600	215000	27362k	2.20	030
030026	100	22600		28.87	160251	100	39300	1472200	5.82	730048	600	512500	27874k	2.19	940
030102	100	2000		28.75		200	128700	1600300	5.81	730039	600	512500	28387k	2.19	100
030088	100	700		28.71	160252	200	32900	1633800	5.77	720370	600	3152400	31539k	2.18	720
070670	100	101000		10 57		200	24400	1659000	5.75		600	2450400	246 901	0.49	

The network optimization model analyzes one year at a time. It starts with a list of possible investments on bridges that weren't already programmed in an earlier year. These investments are sorted by incremental benefit/cost ratio, then investments are programmed until the <u>budget</u> is exhausted. This is explained in more detail in the <u>optimization section</u> of this manual.

Intermediate results for each year of the analysis, presented in the same manner as the <u>optimization example</u>, can be found on the Optimization Tableau worksheet. Yellow-highlighted investments are the ones that were programmed. White investments were considered but not programmed. When a white investment is followed by more yellow investments farther down the list, it means that a higher-cost investment was programmed on the same bridge. It will be one of the yellow investments shown lower in the list that same year.

The "Expanded" checkbox at the top of the worksheet controls how much information is displayed about each investment. If this box is cleared, only the bridge ID is shown and the worksheet then is narrower.

Click on any bridge ID to see that bridge on the <u>Candidates</u> worksheet.

Candidates

					40951											
his wa	orksheet is	not intend	led to be edi	ited and sh	ould not be	referenced	by formulas									
iitial ce	ost of inte	rvention														
	-		2007	2008	2009	2010	2011	2012	2013	2014						
	Do nothi Auto MP		0 17800	0 24100	0 31000	0 36800	0 42300	0 9200	0 19900	0 21100						
	Auto rep		836800	836800	836800	836800	836800	836800	836800	836800						
											hlighted cano	lidate and y	ear, if any,	was selecte	d by the net	work optim
			(
remon	nance or In	ntervention	(percent) 2007	2008	2003	2010	2011	2012	2013	2014						
1	Do nothi	ng	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00						
	Auto MP		1.82	•	•	•	•	•	•	•						
	Auto rep		5.39	•	•	•	•	•	•	•						
errorn	nañce IS ex	cpressed a	s percent of	ene most d	estrable val	uc										
ocreme	ntal utility	/cost ratio	for qualifie													
	-		2007	2008	2003	2010	2011	2012	2013	2014						
	Do nothi Auto MP		17.0506													
	Auto MH Auto rep		0.72967													
			change in co	st when up	scoping fro	m the next-l	ess-expens	ive qualified	candidate	the same ye	ar i					
leason	s for disq	ualification	2007	2008	2009	2040	2014	2012	2042	2014						
1	Do nothi	ng	2007	2008	2009	2010	2011	2012	2013	2014						
	Auto MP		Ŭ	·	·	•	•	·	·	·						
	Auto rep		0 years after	•	•	•	•	•	•	•						
		ecause utili	eria ty was negal	tive	level											
= disc	qualified b qualified b	ecause utili lecause a lo lecause ano	ty was nega wer-cost in other interve	tive tervention ntion gave	gave higher a higher mar	ginal utility	for similar r	narginal cos	t							
= disc	qualified b qualified b	ecause utili lecause a lo lecause ano	ty was nega ower-cost in	tive tervention ntion gave	gave higher a higher mar	ginal utility	for similar r	narginal cos	t							
= disc = filte	qualified b qualified b red out by	ecause utili jecause a lo jecause and y action ca st intervent	ty was nega wer-cost in other interve	tive tervention ntion gave tions on th	gave higher a higher mar e control pa forecasts	ginal utility nel										
8 = diso L = filte Detailee	qualified b qualified b red out by d data: fire	ecause utili ecause a lo ecause and y action ca y action ca st intervent Prog	ty was nega ower-cost in other interve tegory selec ions with pe	tive tervention ntion gave tions on th arformance	gave higher a higher mar e control pa forecasts Incr	ginal utility nel Life cycle b	enefits		Condition I		BI deck-sup					
) = disc L = filte	qualified b qualified b red out by	ecause utili jecause a lo jecause and y action ca st intervent	ty was nega ower-cost in other interve tegory selec	tive tervention ntion gave tions on th	gave higher a higher mar e control pa forecasts	ginal utility nel				forecasts: N 2008 466N	IBI deck-sup 2003 366N	subs-culv; 2010 365N	Bridge her 2011 365N	alth index; P 2012 365N	aint health i 2013 365N	ndex 2014 355N
) = disc L = filte Detailee Year	qualified b qualified b red out by d data: fire Type	ecause utili ecause a lo ecause and y action ca y action ca st intervent Prog	ty was nega ower-cost in other interve tegory selec ions with pe Cost	tive tervention ntion gave tions on th arformance Utility	gave higher a higher mar e control pa forecasts Incr Ben/Cost	ginal utility nel Life cycle b Agency	enefits User	Total	Condition 1 2007	2008	2003	2010	2011	2012	2013	2014
i = diso i = filte)etaileo Year 2007	qualified b qualified b red out by d data: fir: Type 1	ecause utili because a lo because and y action ca y action ca st intervent Prog Year	ty was nega over-cost in/ other intervent tegory select tions with pe Cost 0	tive tervention of tions on th erformance Utility 0.00	gave higher a higher mar e control pa forecasts Incr Ben/Cost 0.000	ginal utility nel Life cycle b Agency 0	enefits User O	Total 0	Condition 2007 467N 95 97	2008 466N 93 96	2009 366N 92 94	2010 365N 90 93	2011 365N 88 91	2012 365N 86 89	2013 365N 85 88	2014 355N 83 86
i = diso = filte letoileo Year 2007	qualified b qualified b red out by d data: fire Type	ecause utili ecause a lo ecause and y action ca y action ca st intervent Prog	ty was nega ower-cost in other interve tegory selec ions with pe Cost	tive tervention ntion gave tions on th arformance Utility	gave higher a higher mar e control pa forecasts Incr Ben/Cost	ginal utility nel Life cycle b Agency	enefits User	Total	Condition 2007 467N 95 97 467N	2008 466N 93 96 466N	2009 366N 92 94 366N	2010 365N 90 93 365N	2011 365N 88 91 365N	2012 365N 86 89 365N	2013 365N 85 88 365N	2014 355N 83 86 365N
i = disc l = filte Detailec Year	qualified b qualified b red out by d data: fir: Type 1	ecause utili because a lo because and y action ca y action ca st intervent Prog Year	ty was nega over-cost in/ other intervent tegory select tions with pe Cost 0	tive tervention of tions on th erformance Utility 0.00	gave higher a higher mar e control pa forecasts Incr Ben/Cost 0.000	ginal utility nel Life cycle b Agency 0	enefits User O	Total 0	Condition 2007 467N 35 37 467N 35	2008 466N 93 96 466N 95	2009 366N 92 94	2010 365N 90 93	2011 365N 88 91	2012 365N 86 89 365N 88	2013 365N 85 88	2014 355N 83 86
) = disc L = filte Detailer Year 2007	qualified b qualified b red out by d data: fir: Type 1	ecause utili because a lo because and y action ca y action ca st intervent Prog Year	ty was nega over-cost in/ other intervent tegory select tions with pe Cost 0	tive tervention of tions on th erformance Utility 0.00	gave higher a higher mar e control pa forecasts Incr Ben/Cost 0.000	ginal utility nel Life cycle b Agency 0	enefits User O	Total 0 -7200	Condition 2007 467N 95 97 467N	2008 466N 93 96 466N	2009 366N 92 366N 366N 93	2010 365N 90 93 365N 92	2011 365N 88 91 365N 90	2012 365N 86 89 365N	2013 365N 85 88 365N 87	2014 355N 83 86 365N 85
) = disc = filte Detailer 2007 2007	ualified b qualified b red out by d datas fire Type 1 1 2	ecause utili because a lo because and y action ca y action ca st intervent Prog Year	ty was nega over-cost ini other intervent tegory select ions with pe Cost 0 17800	tive tervention ntion gave tions on th stformance Utility 0.00	gave higher a higher man e control pa forecasts Incr Ben/Cost 0.000 17.051	rginsl utility inel Life cycle b Agency 0 -7200	enefits User O O	Total 0 -7200	Condition 2007 467N 35 37 467N 35 37 467N 35 37 467N 35	2008 466N 93 96 466N 95 98 667N 93	2003 366N 92 34 366N 93 97 567N 97	2010 365N 90 33 365N 92 96 566N 36	2011 365N 88 31 365N 90 34 566N 34	2012 365N 86 33 365N 88 92 465N 32	2013 365N 85 365N 87 91 465N 91	2014 355N 83 86 365N 85 89 465N 83
) = diso = filte <u>Vear</u> 2007 2007	qualified b qualified b red out by d datas fir Type 1 1 2 3	ecause utili because a lo because and y action ca y action ca st intervent Prog Year	ty was nega wer-cost in ther interve tegory selections ions with po Cost 0 17800 836800	tive tervention on thion gave ttions on th enformance Utility 0.00 1.82 5.39	gave higher man a higher man e control pa forecasts Incr Ben/Cost 0.000 17.051 0.730	iginal utility Inel Life cycle b Agency 0 -7200 -706500	enefits User 0 0	Total 0 -7200 -706500	Condition 2007 467N 35 37 467N 95 37 467N	2008 466N 33 36 466N 35 38 667N 39 33	2009 366N 92 366N 93 93 97 567N 97 97	2010 365N 90 33 365N 92 36 566N 36 36 36	2011 365N 88 31 365N 90 34 566N 94 34	2012 365N 86 33 365N 88 32 465N 32 33	2013 365N 85 365N 87 91 465N 91 91	2014 355N 83 86 365N 85 83 465N 83 90
= disc = filte <u>Vear</u> 2007 2007	ualified b qualified b red out by d datas fire Type 1 1 2	ecause utili because a lo because and y action ca y action ca st intervent Prog Year	ty was nega over-cost ini other intervent tegory select ions with pe Cost 0 17800	tive tervention ntion gave tions on th stformance Utility 0.00	gave higher a higher man e control pa forecasts Incr Ben/Cost 0.000 17.051	rginsl utility inel Life cycle b Agency 0 -7200	enefits User O O	Total 0 -7200	Condition 2007 467N 35 37 467N 35 37 467N 35 37 467N 35	2008 466N 33 36 466N 35 38 667N 39 33 39 466N	2003 366N 92 94 366N 93 97 567N 97 97 366N	2010 365N 90 33 365N 92 36 566N 36 36 365N	2011 365N 88 91 365N 90 34 566N 94 34 365N	2012 365N 86 365N 88 32 465N 32 465N 32 33 365N	2013 365N 85 365N 87 91 465N 91 91 31 365N	2014 355N 83 86 365N 85 89 465N 89 90 365N
= disc = filte <u>Vear</u> 2007 2007	qualified b qualified b red out by d datas fir Type 1 1 2 3	ecause utili because a lo because and y action ca y action ca st intervent Prog Year	ty was nega wer-cost in ther interve tegory selections ions with po Cost 0 17800 836800	tive tervention on thion gave thions on th enformance Utility 0.00 1.82 5.39	gave higher man a higher man e control pa forecests Iner Ben/Cost 0.000 17.051 0.730	iginal utility Inel Life cycle b Agency 0 -7200 -706500	enefits User 0 0	Total 0 -7200 -706500	Condition 2007 467N 35 37 467N 35 37 467N 35 37 467N 35	2008 466N 33 36 466N 35 38 667N 39 33	2009 366N 92 366N 93 93 97 567N 97 97	2010 365N 90 33 365N 92 36 566N 36 36 36	2011 365N 88 31 365N 90 34 566N 94 34	2012 365N 86 33 365N 88 32 465N 32 33	2013 365N 85 365N 87 91 465N 91 91	2014 355N 83 86 365N 85 83 465N 83 90
= disc = filte etsile 2007 2007 2007	qualified b qualified b red out by d datas fir Type 1 1 2 3	ecause utili because a lo because and y action ca y action ca st intervent Prog Year	ty was nega wer-cost in ther interve tegory selections ions with po Cost 0 17800 836800	tive tervention on thion gave thions on th enformance Utility 0.00 1.82 5.39	gave higher man a higher man e control pa forecests Iner Ben/Cost 0.000 17.051 0.730	iginal utility Inel Life cycle b Agency 0 -7200 -706500	enefits User 0 0	Total 0 -7200 -706500	Condition 2007 467N 35 37 467N 35 37 467N 35 37 467N 35	2008 466N 93 96 466N 95 98 667N 99 93 93 466N 93	2009 366N 92 366N 93 93 97 567N 97 97 366N 94	2010 365N 90 33 365N 92 36 566N 96 365N 335N	2011 365N 88 31 365N 90 34 566N 34 566N 34 365N 31	2012 365N 86 39 365N 88 32 465N 92 93 365N 83	2013 365N 85 88 365N 87 91 465N 91 91 91 31 365N 88	2014 355N 83 86 365N 85 89 465N 89 90 365N 86
= disc = filte etsile 2007 2007 2007	uslified b qualified b red out by d dates fire 1 2 3 3	ecause utili because a lo because and y action ca y action ca st intervent Prog Year	ty was hega ty was hega the intervent in the provided of the intervent tegory select cost 0 17800 836800 24100	tive tervention ntion gave tions on th stformance Utility 0.00 1.82 5.39 1.12	gave higher man e control pa forecasts Iner Ben/Cost 0.000 17.051 0.730	ginal utility nel Life cycle b Agency 0 -7200 -726500 -15400	enefits User 0 0	Total 0 -7200 -706500 -15400	Condition 2007 467N 35 37 467N 35 37 467N 35 37 467N 35	2008 466N 33 36 466N 35 38 667N 39 39 466N 33 36 466N 33 36 36 33	2009 366N 92 94 366N 93 97 567N 97 366N 94 98 667N 93	2010 365N 90 93 365N 92 96 566N 96 365N 93 96 365N 93 37 567N	2011 365N 88 365N 90 94 566N 94 34 365N 91 95 566N 36	2012 365N 86 355N 88 92 465N 92 33 355N 83 34 566N 34	2013 365N 85 88 365N 87 91 465N 91 365N 88 92 465N 32	2014 355N 83 86 365N 85 89 465N 89 90 365N 86 91 465N 91
= disco = filte (tsiler 2007 2007 2008 2008	ualified b qualified b red out by d data: fir Type 1 1 2 3 3 2 3	ecause utili because a lo because and y action ca y action ca st intervent Prog Year	ty was nega wer-cost in the intervent tegory select ions with pe Cost 0 17800 836800 24100 836800	tive tervention ntion gave tions on th utility 0.00 1.82 5.33 1.12 5.33	gave higher a higher mana e control pa forecasts Incr Ben/Cost 0.000 17.051 0.730 0.730	ginal utility nel Life cycle b Agency 0 -7200 -726500 -15400 -6565500	enefits User 0 0 0	Total 0 -7200 -706500 -15400	Condition 2007 467N 35 37 467N 35 37 467N 35 37 467N 35	2008 466N 33 36 466N 35 38 667N 39 39 466N 33 36 466N	2009 366N 92 94 366N 93 97 567N 97 366N 94 98 667N 99 39 99 99 99 99 99 99	2010 365N 90 365N 92 366 365N 366 365N 335 337 567N 37 37 37	2011 365N 88 31 365N 30 34 566N 34 355N 31 355 566N 36 36 36	2012 365N 86 365N 88 32 465N 32 33 365N 83 365N 83 365N 83 365N 83 364 364 34	2013 365N 85 86 365N 87 91 465N 91 365N 88 32 465N 82 32 33 33	2014 355N 85 365N 85 83 465N 83 30 365N 86 31 465N 91 31
= disco = filte (tsiler 2007 2007 2008 2008	uslified b qualified b red out by d dates fire 1 2 3 3	ecause utili because a lo because and y action ca y action ca st intervent Prog Year	ty was hega ty was hega the intervent in the provided of the intervent tegory select cost 0 17800 836800 24100	tive tervention ntion gave tions on th stformance Utility 0.00 1.82 5.39 1.12	gave higher man e control pa forecasts Iner Ben/Cost 0.000 17.051 0.730	ginal utility nel Life cycle b Agency 0 -7200 -726500 -15400	enefits User 0 0	Total 0 -7200 -706500 -15400	Condition 2007 467N 35 37 467N 35 37 467N 35 37 467N 35	2008 466N 33 36 466N 35 38 667N 39 39 466N 33 36 466N 33 36 36 33	2003 366N 32 34 366N 33 37 367N 37 367N 39 366N 39 39 39 39 39 366N	2010 365N 30 355N 32 365N 36 36 36 36 36 36 37 37 37 365N	2011 365N 88 355N 90 34 566N 34 365N 31 365N 36 365N 365N	2012 365N 86 365N 88 32 365N 32 33 34 365N 34 34 34 365N	2013 365N 85 86 365N 87 91 465N 91 365N 88 92 465N 92 32 33 35N 325N 325N 335N	2014 355N 86 365N 85 89 465N 89 30 365N 86 86 91 465N 91 31 365N
= disc = filte <u>Year</u> 2007 2007 2008 2008	ualified b qualified b red out by d data: fir Type 1 1 2 3 3 2 3	ecause utili because a lo because and y action ca y action ca st intervent Prog Year	ty was nega wer-cost in the intervent in tagory select ions with po Cost 0 17800 836800 24100 836800	tive tervention ntion gave tions on th utility 0.00 1.82 5.33 1.12 5.33	gave higher a higher mana e control pa forecasts Incr Ben/Cost 0.000 17.051 0.730 0.730	ginal utility nel Life cycle b Agency 0 -7200 -726500 -15400 -656500	enefits User 0 0 0	Total 0 -7200 -706500 -15400	Condition 2007 467N 35 37 467N 35 37 467N 35 37 467N 35	2008 466N 33 36 466N 35 38 667N 39 39 466N 33 36 466N 33 36 36 33	2003 366N 922 34 366N 93 37 567N 937 37 366N 98 98 667N 93 93 93 93 93 93	2010 365N 90 335N 92 365N 96 365N 96 365N 97 567N 97 97 365N 93	2011 365N 88 365N 300 34 566N 34 355N 34 355N 31 355 566N 365 365 365 365 32	2012 365N 86 355N 88 32 465N 32 33 355N 83 34 566N 34 34 34 365N 34 34 365N 30 30 30	2013 365N 85 86 365N 87 91 465N 91 365N 88 92 465N 92 93 365N 88	2014 355N 865 365N 85 89 465N 89 90 365N 89 90 365N 89 465N 91 91 91 31 87
i = disc = filte <u>Vear</u> 2007 2007 2008 2008 2008	ualified b qualified b red out by d data: fir Type 1 1 2 3 3 2 3	ecause utili because a lo because and y action ca y action ca st intervent Prog Year	ty was nega wer-cost in the intervent in tagory select ions with po Cost 0 17800 836800 24100 836800	tive tervention ntion gave tions on th utility 0.00 1.82 5.33 1.12 5.33	gave higher a higher mana e control pa forecasts Incr Ben/Cost 0.000 17.051 0.730 0.730	ginal utility nel Life cycle b Agency 0 -7200 -726500 -15400 -656500	enefits User 0 0 0	Total 0 -7200 -706500 -15400	Condition 2007 467N 35 37 467N 35 37 467N 35 37 467N 35	2008 466N 33 36 466N 35 38 667N 39 39 466N 33 36 466N 33 36 36 33	2003 366N 32 34 366N 33 37 367N 37 367N 39 366N 39 39 39 39 39 366N	2010 365N 30 355N 32 365N 36 36 36 36 36 36 37 37 37 365N	2011 365N 88 355N 90 34 566N 34 365N 31 365N 36 365N 365N	2012 365N 86 365N 88 32 365N 32 33 34 365N 34 34 34 365N	2013 365N 85 86 365N 87 91 465N 91 365N 88 92 465N 92 32 33 35N 325N 325N 335N	2014 355N 86 365N 85 89 465N 89 30 365N 86 86 91 465N 91 31 365N
) = disc = filte Detailer 2007 2007	uslified b qualified b red out by d dbbs fire 1 2 3 3 2 2 3 3	ecause utili because a lo because and y action ca y action ca st intervent Prog Year	ty was nega wer-cost in ther interve tegory select ions with po Cost 0 17800 836800 24100 836800 31000	tive tervention ntion gave tions on th stromance Utility 0.00 1.82 5.33 1.12 5.33 0.18	gsve higher a higher mane e control par forecasts 0.000 17.051 0.730 0.000 0.000	ginal utility nel Life cycle b Agency 0 -7200 -7200 -706500 -75400 -656500 -29600	enefits User 0 0 0 0	Total 0 -7200 -706500 -15400 -656500 -29600	Condition 2007 467N 35 37 467N 35 37 467N 35 37 467N 35	2008 466N 33 36 466N 35 38 667N 39 39 466N 33 36 466N 33 36 36 33	2003 366N 32 34 366N 37 567N 37 37 366N 39 36 667N 39 36 39 368N 39 366N 39 366N 39 32 666N 39 366N 39 366N 39 366N 39 366N 39 366N 39 20 366N 39 20 366N 39 20 366N 39 20 366N 37 20 37 20 37 20 37 20 37 20 37 20 37 37 37 37 37 37 37 37 37 37 37 37 37	2010 365N 90 33 365N 92 96 566N 96 365N 93 37 97 97 97 97 97 97 97 97 97 9	2011 365N 88 31 365N 30 34 566N 34 365N 365N 365N 365N 365N 365N 365N 37 37 37 37	2012 365N 866 83 365N 32 465N 32 33 365N 34 365N 34 364N 34 364N 34 365N 37N 37N 37N 37N 37N	2013 365N 85 88 365N 87 31 465N 91 365N 88 92 465N 92 335N 88 92 33 34 56N 88 94 36 94 36 94 36 94 94 95 94 95 94 94 95 95 95 95 95 95 95 95 95 95	2014 355N 83 365 365N 83 465N 83 465N 83 30 365N 365N 31 365N 81 31 31 365N 81 31 32 82 465N 81 32
8 = disc 1 = filte 2007 2007 2008 2008 2008 2008	uslified b qualified b red out by d dbbs fire 1 2 3 3 2 2 3 3	ecause utili because a lo because and y action ca y action ca st intervent Prog Year	ty was nega wer-cost in ther interve tegory select ions with po Cost 0 17800 836800 24100 836800 31000	tive tervention ntion gave tions on th stromance Utility 0.00 1.82 5.33 1.12 5.33 0.18	gsve higher a higher mane e control par forecasts 0.000 17.051 0.730 0.000 0.000	ginal utility nel Life cycle b Agency 0 -7200 -7200 -706500 -75400 -656500 -29600	enefits User 0 0 0 0	Total 0 -7200 -706500 -15400 -656500 -29600	Condition 2007 467N 35 37 467N 35 37 467N 35 37 467N 35	2008 466N 33 36 466N 35 38 667N 39 39 466N 33 36 466N 33 36 36 33	2003 366N 392 365N 365N 37 37 37 366N 38 667N 39 38 667N 39 39 39 366N 39 39 366N 39 39 366N	2010 365N 90 33 365N 96 566N 96 365N 93 97 567N 97 365N 93 97 365N 93 97 365N	2011 365N 88 365N 365N 34 566N 34 34 365N 31 35 566N 365N 365N 365N 365N 365N 37 365N	2012 365N 86 83 365N 83 32 465N 32 33 365N 83 34 566N 34 365N 30 355N 30 355N 30 355N 365N 375N	2013 365N 85 88 365N 81 465N 91 365N 88 32 465N 32 33 365N 88 32 33 365N 88 32 33 365N	2014 355N 83 86 85 83 465N 83 90 365N 86 91 365N 91 365N 87 91 365N 87 92 92 92 94 95N

This worksheet presents detailed information about the network level analysis as it affects one bridge. In the <u>network optimization</u>, a screening process reduces the number of interventions to be considered and calculates an <u>incremental benefit/cost ratio</u> for priority-setting. The top set of tables shows the inputs and results of this stage.

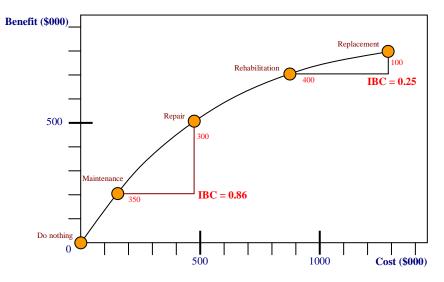
In the bottom table you can see a listing of all the interventions considered and what happened to them. If one was programmed, it appears highlighted in yellow. Any that were screened out are shown in gray text. The table shows the performance that was predicted for the years following each intervention, as determined in the PLAT.

When you are viewing a bridge on this worksheet, you can click the Details button on the toolbar to see the same bridge in the PLAT.

Configuration Network-Level Analusis Configuration This worksheet holds general inputs that control database access. It may be edited and referenced by formula Model configuration US Customary units District Files and databases Default PLAT file FDOT PLAT.xls DSN=Florida P43 2005;UID=Pontis;PWD=Pontis TRUE Pontis Connect String PLAT Results Connect String District Include non-state bridges First calendar year of program Years in program horizon Major bridge deck area threshold FALSE DSN=Florida PLAT Results 200 15000 User preferences FALSE FALSE TRUE Advanced Auto update bridges worksheet Sort by clicking

This worksheet sets various operational parameters governing the NAT and its models. You normally don't need to change anything on this worksheet unless you're a system <u>administrator</u>. The model configuration parameters are generally a matter of agency policy, and the user preferences are for administrators who are <u>customizing</u> the system. Your system administrator can tell you what connection strings to use for accessing the BrM database and the <u>PLAT Results Database</u>.

Optimization Model


The problem of maximizing one objective subject to one constraint is known as the multiple-choice knapsack problem. The application described here is more particularly known as the capital budgeting problem. This is a famous problem in the operations research literature and has many possible solution methods. Exact solutions to the capital budgeting problem are surprisingly difficult to find, especially for a full-size state bridge inventory. But there is an approximate solution method that reliably produces solutions very close to the true optimum much more quickly than any exact method. This is called the <u>incremental benefit/cost (IBC)</u> method. The speed of this method gives us a very user-friendly and responsive decision support tool.

An important aspect of the IBC method is that it produces near-optimal (and not guaranteed-optimal) solutions. It is possible in principle to take an IBC solution, investigate variations on it, and possibly come up with a somewhat better solution. However, the IBC method does offer a softer guarantee, that if the solution is not optimal, the maximum amount of sub-optimality (the additional total benefit that is possible but was not found) is limited to the benefit of the largest candidate selected. For a real-size problem, this is within the margin of uncertainty in the <u>budget constraints</u> and other inputs, so the small sub-optimality is considered acceptable as a practical matter.

The software algorithm used for computing the optimal program analyzes each year individually, prioritizing candidates according to the incremental benefit/cost ratio, which is the ratio of change in benefit divided by change in cost. Benefit is the improvement in the selected performance measure, relative to doing nothing, made possible by the added expenditure. Investments are programmed one at a time until the budget constraint is met. Bridges that are programmed in a given year are not considered for further action in later years. All of these steps are explained in more detail in the following sections.

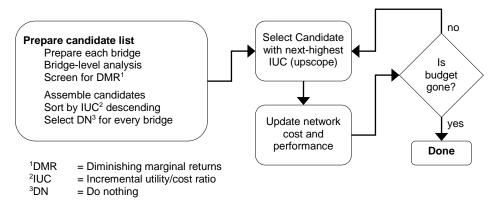
Diminishing Marginal Returns

The <u>IBC method</u> relies on an economic concept called the Law of Diminishing Marginal Returns. This is a concept describing the economic relationships among alternative uses of the same investment capital. Each bridge has several alternative candidates with varying levels of investment and performance benefit. If <u>funding is constrained</u>, it is desirable to find the highest-benefit use for the money. If more funding becomes available, then additional investment can be made in the same bridges to increase the benefit. If the benefits of the various alternative candidates on a bridge are plotted against costs, the curve shown below is a typical result. When interpreting this example, "benefit" is defined as the savings in life cycle cost of doing something, rather than doing nothing, or the improvement in condition or performance from doing something rather than doing nothing. If benefit is positive, this means that the discounted future cost savings exceeds the initial cost, or performance is improved. So any positive benefit is good.

In the example diagram, if the scope of work on the bridge is upgraded from Maintenance to Repair, the additional cost is \$350,000 and the additional benefit is \$300,000, for a marginal return, or incremental benefit/cost ratio (IBC) of 0.86. Similarly, if the scope of work is upgraded from Rehabilitation to Replacement, the cost increases by \$400,000 while the benefit increases by only \$100,000, for an IBC of 0.25.

This typical pattern, where each incremental investment produces a less-than-proportionate increase in benefits, is called the Law of Diminishing Marginal Returns. Under this rule, more expensive alternatives have progressively smaller IBC ratios. In other words, the first dollar gives the greatest benefit and the last dollar gives the smallest benefit. So in a program with a very high or unconstrained budget, the last alternative considered will be the one with a high additional cost but a small additional benefit. This will generally be the alternative with the smallest IBC ratio.

To understand why this curve must always be concave downward, imagine a situation where Repair costs are more than Rehabilitation. If this were true, then Rehabilitation would have higher benefits at lower cost, so it would always be a more economical choice. Because of the competition in any real bridge inventory among a large number of investments, any Candidate that has benefits too low, or costs too high, to fit the diminishing marginal returns curve, will be less attractive than other investments on the same bridge or other bridges. This is equivalent to saying that bridge maintenance projects behave like normal economic goods (rather than Giffen goods). Bridge maintenance models as they have been developed in practice, with discounting, will practically always behave mathematically like a normal good.


Incremental Benefit/Cost Algorithm

The IBC heuristic maintains a list of investment candidates sorted by the ratio of change in benefit, divided by change in cost. Benefit can be any <u>measure</u> that is additive over the entire bridge inventory, so an increase in benefit on one bridge also increases benefit by the same amount for the inventory as a whole. On each bridge, a set of alternative candidates is defined, starting with do-nothing at zero cost and zero benefit, and ending with total replacement at maximum cost and benefit. The rule of diminishing marginal returns is essential to the heuristic, so candidates failing to satisfy this rule are eliminated from consideration. The general steps of the heuristic are as follows:

- 1. Screen the candidates for <u>diminishing marginal returns</u> on each bridge.
- 2. Candidates of all bridges are combined into a list, sorted by decreasing IBC.
- 3. Select do-nothing for each bridge.
- 4. Process the candidate list in IBC-sorted order. At each stage the <u>budget constraint</u> is checked.
- 5. Each candidate replaces the previously-selected candidate on the same bridge, and then the total cost and performance are updated.
- 6. The heuristic stops after scanning through the complete list or earlier if the budget constraint is met.

In the version of the algorithm implemented in NAT, the final candidate programmed is the one that just equals or exceeds the budget. Thus, programmed expenditures may slightly more than the budget constraint. This keeps the algorithm from getting "hung up" on particularly large projects.

A flowchart of this algorithm appears below. The computationally-intensive part of the IBC heuristic is a sorting algorithm selected for computational efficiency based on the means of updating the candidate list.

As implemented in NAT, the algorithm actually continues past the point of determining programmed cost and performance, in order to determine the cost to satisfy a performance target, and the cost to maintain current performance.

Example of IBC Algorithm

The left side of the table below lists four bridges with a total of 10 alternative candidates (Alt). Each bridge has a do-nothing alternative labeled "0", which has zero cost and benefit by definition. Life cycle cost (LCC) is calculated by the PLAT for each alternative. Benefit is the LCC of do-nothing minus the LCC of the alternative being considered. Incremental benefit/cost ratio (IBC) is the ratio of change in benefit divided by change in cost, relative to the next-less expensive alternative on the same bridge. By definition the do-nothing alternatives do not have an IBC because there is no less expensive alternative.

These candidates can be placed in priority order by sorting by IBC. The right side of the table shows the result. The right-most column of this table is the cumulative cost of the four-bridge program as each increment of funding is added, if investments are selected in order of IBC. Please note that cumulative values are not just the cumulative sum of the cost column. This is because when we determine the cumulative amount of money for the bridge network and select any candidate for a bridge on the list, we also need to deselect the previously selected candidate for that bridge. For example, if Alt #2 of Bridge #1 is added to the program (seventh row of the table), then the \$700,000 cost of Alt #2 is added, but this replaces Alt #1, whose \$200,000 cost is subtracted. This is a net increase in cost of \$500,000 which increases the cumulative value from \$600,000 to \$1,100,000.

If no funding is available, do-nothing must be selected for all four bridges, so the total program cost is zero. If \$1.7 million is available, there is enough money to perform Alt #1 on Bridges #2-3, and there is also enough to up-scope Bridge #1 to Alt #2. Also, because the algorithm allows one additional expenditure to use up and possibly slightly exceed the budget, it will up-scope Bridge #3 to Alt #2. If \$2.6 million is available, then there is also enough money to perform the work on Bridge #4.

Bridge	Alt	Cost	LCC	Benefit	IBC
1	0	0	2400	0	
1	1	200	2000	400	2.00
1	2	700	1400	1000	1.20
2	0	0	3000	0	
2	1	500	2550	450	0.90
3	0	0	2600	0	
3	1	400	2000	600	1.50
3	2	600	1850	750	0.75
4	0	0	1900	0	
4	1	800	1340	560	0.70

Candidates grouped by bridge

Sorted by IBC

Bridge	Alt	IBC	Cost	Cum
1	0		0	0
2	0		0	0
3	0		0	0
4	0		0	0
1	1	2.00	200	200
3	1	1.50	400	600
1	2	1.20	700	1100
2	1	0.90	500	1600
3	2	0.75	600	1800
4	1	0.70	800	2600

All economic quantities in \$000s

At any given budget level, total benefits are maximized by following this priority list, within a reasonable level of uncertainty.

The NAT shows these same internal results of the optimization in the Tableau worksheet.

Performance Measures

The primary purpose of the Network Analysis Tool is to determine the maximum level of inventory performance achievable at any given level of funding. The <u>budget constraint</u> is intended to be easily manipulated by the user to analyze sensitivity to funding uncertainty. Performance may be measured in several ways, depending on the purpose of the analysis. If physical condition is the only concern, then <u>NBI ratings</u> and/or <u>health index</u> are most appropriate. For a broader measure of performance that includes the direct effect of bridges on road users and the value of preventive maintenance opportunities, it is best to use <u>life cycle cost</u>.

All performance measures are calculated individually by bridge in the PLAT, then communicated to NAT through the <u>PLAT Results Database</u>. Then NAT performs the further computations to aggregate performance over multiple bridges.

Performance is calculated by the NAT for any inventory subset selected on the <u>Control Panel</u>. If the choice of performance measure or the composition of the network subset are changed by clicking in the Control Panel area of the <u>Dashboard</u>, all the tables and graphs on the dashboard are updated immediately. The Dashboard also has a <u>time-series graph</u> and table to enable comparisons of performance between different parts of the inventory.

Percent Good/Excellent

For statewide program management purposes, the primary objective to be maximized by the NAT is the percentage of structures on the State Highway System having a condition rating of either excellent or good, either for the lowest of deck, superstructure, or substructure ratings; or for the culvert rating. This is interpreted as the percent whose lowest NBI condition rating is at least 6.

Forecasting of future NBI condition ratings is performed by first forecasting future element condition states, then translating the forecasts to NBI ratings. All of this is done in the PLAT.

Health Index

The Health Index was first proposed by the California Department of Transportation as a type of weighted average condition measure for a bridge or any subset of an inventory. It includes all condition states, weighting each element by its failure cost or by some other appropriate weight. This gives emphasis to elements that have the biggest economic impact on bridge functionality. Prioritization by health index gives the same results as "worst-first" prioritization, which understates the importance of preventive maintenance on the better condition states. As a measure of current inventory condition, however, the Health Index is a consistent way to reduce the voluminous data in an element inspection into a simpler quantity that can be compared across bridges and over time. The Health Index is computed as follows:

$$HI = \frac{CEV}{TEV} \times 100$$

Current element value

$$CEV = \sum_{e} W_e \left(P_{e1} + \frac{2}{3} P_{e2} + \frac{1}{3} P_{e3} \right)$$

 $TEV = \sum_{e} W_e$

Total element value

where
$$W_e$$
 is the health index weight for element e
 P_{ei} is the fraction of element e in condition state i

At the network level, health index is computed by separately accumulating CEV and TEV over the entire inventory, then performing the HI computation only for the inventory as a whole. This gives greater emphasis to bridges with higher replacement costs.

A separate health index is computed for painted steel elements. This makes it possible to use the NAT to develop a program focused solely on painting.

Life Cycle Benefit

PLAT computes a life cycle cost for every intervention using models of initial cost, action effectiveness, deterioration, functional needs, user costs, and other factors. These models are fully described in the PLAT Users Manual. They are based on a life cycle activity profile shown schematically in the diagram below.

Each type of cost is defined in the table below. If any Candidate is compared with the possibility of doing nothing, the operative question is: will the investment of initial costs (blue) be more than offset by savings in future costs (violet, red, light blue, and purple).

Agency life cycle costs		User life cycle costs	
Direct cost (blue)	Cost directly related to the quantity of scope items	Accident cost (violet)	Expected value of user costs due to excess accident risk, because of narrow bridge roadway
Indirect cost (blue)	Maintenance of traffic, mobilization, and engineering costs	Delay cost (violet)	Expected value of user costs due to height or weight restrictions, and risk
Agency risk cost (red)	Costs associated with bridge characteristics that increase risk	Movable bridge cost	Excess user cost due to moveable bridge openings
Long-term cost (light	Total life cycle costs beyond the end of	Long-term cost	Remaining user costs beyond the end of the
blue)	the model, based on ending conditions	(purple)	model
Total agency LCC	Sum of the above, all discounted	Total user LCC	Sum of the above, all discounted

These cash flows are discounted to the decision point of the analysis using net present value analysis. Each cost item is discounted (reduced in value) by an amount that depends on how far in the future it occurs. Naturally if a cost needs to be incurred, we prefer to put it off as long as possible, because then it matters less to us. The discount factor represents how much less it matters for each year that we can delay the cost.

Total life cycle cost is computed for every candidate, including do-nothing, for every possible implementation year. Life cycle benefit of an intervention is then computed as the life cycle cost of doing nothing that year minus the life cycle cost of the intervention. It is then the savings in life cycle cost achieved by doing something rather than doing nothing.

Administration

It is recommended that the Excel workbook be administered as a custom reporting program for purposes of deployment and security. It reads from the BrM database and the <u>PLAT Results Database</u>, and produces results to be read or printed by the end-user. It does not write anything back to any database.

A small amount of data (mainly network subset choices, budget constraints, and performance targets, all specified on the <u>Dashboard</u>) are created within the workbook and may be saved by the end-user in an Excel .XLS file in the local file system. These data are updated often as a program is refined. Like most Excel files, these should have a normal level of security, protected by the local machine's Windows login procedure and regular backups.

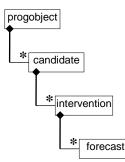
Deployment is recommended to occur once per year. The most convenient way, for administrative purposes, is to provide an Excel template .XLT file in a centralized location accessible to all the users. Each user should launch the system by first launching Excel, then using the **New** command to create the Excel workbook from the template. If desired, a Windows short-cut to the template can be provided, to ensure that a fresh copy of the system is always loaded. If the user attempts to use **Save** to save changes to the file, Excel automatically prompts for a file location and name. The template can be made read-only in the file system so it cannot be modified.

You can modify the Word document containing the Users Manual, and create a new Acrobat file from it. The Acrobat file must be named "Florida NAT Users Manual.pdf". Use print driver settings that produce a bookmark pane and create hyperlinks. When you click the Users Manual button on the toolbar, the software searches first in the network templates path, then the local templates path, and finally in the directory containing the workbook (if it was previously saved), looking for this file. Your local templates path is the one that appears first when you save an Excel file as a template, or when you create a new Excel workbook from a template.

A <u>deployment checklist</u> has been prepared to assist in designing an orderly deployment process. It is recommended that a regular process be undertaken to ensure data quality. See <u>Data Management</u> for information on the data used in the network analysis tool.

The worksheets in the system are designed to be <u>modified</u> by advanced users. Such modifications can be gathered and deployed to all users in the subsequent release.

Deployment Checklist


The following steps should be completed each year to update the network analysis tool and deploy it to all users in headquarters and district offices. To access the Excel worksheets containing administrative data and analytical inputs, you will need to click the Advanced mode button on the <u>toolbar</u>. This turns off worksheet protection and exposes the worksheet tab bar, providing access to all the worksheets in the system.

- Refer to the PLAT Users Manual and complete the deployment checklist there, to ensure there is one working PLAT workstation. You will need to run the PLAT batch process to initialize all your bridges in the PLAT Results Database. NAT requires that the PLAT Results Database first be populated with analysis results before it will produce meaningful outputs.
- □ Identify a clean copy of the latest NAT Excel template and Users Manual, incorporating any software updates and refinements made in the past year.
- Check and update the information on the <u>Configuration</u> worksheet, including everything in the Model Configuration and Files and Databases sections. You must provide an ODBC connection string for both the BrM database and the PLAT Results database.
- □ Finalize the Excel template for deployment.
 - If the <u>Dashboard</u> is in Advanced mode, click the Advanced Mode toolbar button to put it in normal mode.
 - Save the file as an Excel template, along with the Users Manual, in the Office network templates directory.
 - Set the file's read-only bit.
 - Remove and archive the old template.
- □ Notify end-users of the new release. If necessary, send them a new shortcut file pointing to the new template.

Data management

NAT uses data from both the BrM database and the PLAT Results Database. However, the PLAT Results Database is the source of all the data used in its analysis. BrM data are used only in the <u>Bridges</u> worksheet for reporting information about the subset of bridges being analyzed.

When customizing the Bridges worksheet, you can choose any BrM data items from the bridge, userbrdg, roadway, and inspevnt tables. These are reported on the worksheet but never modified.

The entity-relationship diagram at left shows the four tables in the PLAT Results Database, and how they relate to each other. A program object (progobject) is currently the same thing as a bridge, but in the future it can be expanded to other types of transportation assets.

The candidate table contains the names of PLAT candidates, which are shown on the left side of the Candidate Pane on the PLAT Dashboard. An Intervention is one Candidate applied in one implementation year, represented by one cell in the Candidate Pane. A Forecast record contains the forecast performance that would occur in a given year as a result of a given Candidate.

In most cases, the PLAT Results database should be set up on a network server so it can be accessed from all PLAT workstations that will need to update the network level analysis.

Normally it is not necessary to set up password protection for the PLAT Results Database, beyond the access control for its server, since it is not used by any other application and the data are easily re-generated by PLAT.

If desired, you can integrate the PLAT Results database with your BrM database. Use the provided Microsoft Access database as a model for table and column definitions. Be sure to set up a cascading delete referential integrity constraint as is done in the Access database. Then on the PLAT Configuration worksheet, the PLAT Results Database connect string would be the same as the BrM connect string. The two connections are never open at the same time.

NAT outputs data only to its internal worksheets, and not to any external files or databases.

Customizing Worksheets

Generally only the <u>Bridges</u> worksheet is intended to be user-customizable. You can add or subtract columns on the worksheet, including additional BrM data items and a large selection of calculation results, mostly from the <u>PLAT Results database</u>.

To add, delete, or modify columns in the Bridges worksheet, you need to make use of several rows that normally are hidden. Follow these steps:

- Click the Advanced mode button on the toolbar to go into Advanced mode if not already there. The worksheet tabs will appear at the bottom of the screen.
- Click the "<u>Config</u>" worksheet tab, find the item named "Sort by clicking," and set its value to FALSE. Doing this will enable you to select and edit the column headings.
- Click the Bridges worksheet tab. If it starts updating from the database, you don't have to wait for it to complete. Just click the Cancel button on the "Please wait..." box if it appears.
- Select rows 4 through 9 by click-dragging the row numbers at the far left.
- Right-click the selection and choose Unhide. The worksheet will then appear as below.

	A B C	D	E	F	G	Н	1	J	ĸ	L
1	Network-Level Analy	sis 🔽 Show excluded bridges								
2	Bridges									
-	Dhagea	Show do-nothing bridges								
4	Please click the butto	ns at left to operate on each bridge								
6	cale cale cale	bridge	calc	cale	calc	cale	calc	calc	calc	cale
7	inclu andyet brkey	strucname	statehwy	district	repicost	tev				
8										
									Replace.	
	On/ Cand		State			Struc	Func		Cost	TEV
9	Off Year Bridge	D Structure Name	Hwy	Dist	Cust	Ives	Class	Major	(10001)	(1000)
10	On 2009 010032	US 41 NB OVER ALLIGATOR C	1	1	1	2	9	2	469	4947
11	On 2007 010033	US 41 NB OVER OYSTER CK.	1	1	1	2	9	2	182	3296
12	On 2011 010042	US-41 OVER SUNSET CANAL	1	1	1	2	9	2	623	8076
13	On 2013 010045	US 41 OVER MORNING STAR CANAL	1	1	1	2	9	2	866	9777
14	On 2007 010055	US 41 SB OVER ALLIGATOR C	1	1	1	2	9	2	524	5510
15	On 2007 010056	US 41 SB OVER OYSTER CK	1	1	1	2	9	2	316	4093
16	On 2007 010065	AIRPORT ROAD OVER I-75	1	1	1	1	4	2	830	8653
17	On 2012 010073	1-75 SB / JONES LOOP RD	1	1	1	1	1	2	782	10424
18	On 2012 010074	1-75 NB / JONES LOOP RD	1	1	1	1	1	2	782	10431
19	On 2009 010078	1-75 SB/SANDY HARTMANS C	1	1	1	2	1	2	398	4988
20	On 2014 010080	1-75 SB/RIVERSIDE DR & RR	1	1	1	1	1	2	1011	7288
21	On 2014 010081	1-75 NB/RIVERSIDE DR & RR	1	1	1	1	1	2	1011	8134
22	On 2013 010082	1-75 SB / TUCKERS GRADE	1	1	1	1	1	2	788	10074
23	On 2013 010083	1-75 NB / TUCKERS GRADE	1	1	1	1	1	2	792	10083
24	On 2007 010035	US 17 SHELL CK N SLOUGH	1	1	1	2	2	2	465	4508
25 26	On 2014 010038	SR 776 GOTTFRIED CREEK	1	1	1	1	10	2	1021	8580
26	On 2007 030001	1759B/GOLDEN GATE CANAL	1 1	1	1 1	0	1	0	958	RO N.P.

Row 8 is always blank, to ensure that Excel recognizes row 9 as column headings. Rows 6 and 7 are table and column names that determine what data are loaded.

To insert a column, right-click an Excel column heading (the letter at the very top), and choose Insert. Fill in the database table and column names in rows 6 and 7 of the new column, and be sure to provide a label in row 9 for the column heading. The remainder of the column can remain blank. Excel automatically formats the cells correctly, including underlining the column heading. You can add a left or right border to your column or make other format changes, if desired, using the Excel features on the Format menu.

You can also edit or delete columns. However, you may not change or delete columns A through C, which are used by the software for navigation.

The software also provides a number of calculated data items, identified with "calc" as the table name, that you can use as columns in the worksheet. These columns are shown with the <u>Bridges</u> worksheet.