
THE APPLICATION OF OBJECT TECHNOLOGY IN AASHTO’S NEW BRIDGE
LOAD RATING AND DESIGN SYSTEMS

Paul D. Thompson, Consultant, USA
James A. Duray, Michael Baker Jr., Inc., USA

Jay A. Puckett, BridgeTech, Inc. and University of Wyoming, USA
Jeffrey J. Campbell, Michael Baker Jr., Inc., USA

Abstract

Funded by the contributions of over 30 states and the US Federal Highway Administration, the
American Association of State Highway and Transportation Officials (AASHTO) is nearing
completion of a three-year project to develop a pair of related systems for bridge load rating and
design, known as Virtis™ and Opis™ , respectively. A consulting team led by Michael Baker Jr.,
Inc. is developing the systems.

Bridge load rating and design are two very different business processes, yet they have much in
common, including similar philosophical and mathematical approaches, and similar data. The
challenge of the Virtis/Opis project has been to satisfy the complex requirements of each
separate system, while saving AASHTO millions of dollars in development and maintenance
costs by reusing substantial quantities of software between the two systems. An object-oriented
design and development approach has been used to help in meeting these challenges.

Keywords: structures, bridge load rating, bridge design, object-oriented

1. Introduction

The American Association of State Highway and Transportation Officials (AASHTO) is nearing
completion of a three-year project to develop a new combined set of bridge load rating and
design tools, known as Virtis and Opis, respectively. The project is funded by the contributions
of over thirty states and the Federal Highway Administration. Direction of the project is
entrusted in two Task Forces, one concerned with load rating functionality and the other
concerned with design functionality, each having representatives from five states. A consulting
team led by Michael Baker Jr., Inc. is developing the systems, with subcontract support from
BridgeTech, Inc., Paul D. Thompson, and Modjeski & Masters, Inc.

Load rating is the process of ascertaining the capacity of each existing bridge in the nation’s
diverse inventory in order to inform the public of load limits and to develop freight policies and
truck routes. Such information is completely lacking for more than two-thirds of the nation’s
600,000 bridges. In addition, load rating serves an important operational function in the
processing of overload permit applications, to determine whether a specific load can safely travel
over a given route. Speed and accuracy are very important in this type of decision making.

Bridge design is a creative process of finding a configuration of future structural components that
can satisfy a set of functional and aesthetic requirements at minimum initial and life-cycle cost.
Like any complex design process, bridge design depends on the ability to create reasonable
potential solutions, evaluate them, and improve upon them until all requirements are met.

Bridge load rating and design are two very different business processes, yet they have much in
common. Both have similar philosophical and mathematical approaches to structural analysis,
load behavior, and resistance actions, and both require very similar sets of very detailed data
describing each bridge. Both activities benefit from visualization.

The twin challenges of the Virtis and Opis projects are to satisfy the very complex analytical,
graphical, and data management requirements of each separate system, while saving AASHTO
millions of dollars in development and maintenance costs by reusing substantial quantities of
software between the two systems. An object-oriented design and development approach has
been used to help in meeting these challenges.

Since the structural calculations needed for load rating are already well-understood, the Virtis
project has made the decision to reuse an existing software package, called BRASS1, for this
purpose. BRASS, like all industrial-strength load rating packages in common use today, focuses
on each bridge individually and does not have database management or graphical features
suitable for efficient management of large inventories of bridges. The Virtis project, therefore,
has concentrated on building an integrated database and the graphical tools required for
visualizing the data.

A great advantage often touted for object-oriented development is the stability of the domain
model as a description of the permanent and important aspects of the structure of the problem

1 Bridge Rating and Analysis of Structural Systems (BRASS) is a bridge girderline analysis, design, and rating
program that has been in use for many years. It was recently rewritten for the AASHTO LRFD Bridge Design
Specifications. It is developed and maintained by the Wyoming Department of Transportation (US).

domain supported by the software. For Opis, the ability to use the same domain model as Virtis
has presented the opportunity to build much of the kernel of a new bridge design system by
reusing major components of the load rating system. This software reuse was made possible by
designing the domain model to accommodate both sets of requirements simultaneously.

2. Background and objectives

The process of creating Virtis and Opis began in 1995. Both systems emerged from a recognized
need to retire existing, older generation software packages and to adopt a more modern
architecture with an object-oriented structure, a well-organized multi-user database, and a
graphic user interface. Several significant drivers led AASHTO to this decision, including
software obsolescence and accompanying high maintenance costs, usability considerations, and
the need to satisfy new Federal mandates regarding the load rating process.

The AASHTO Bridge Analysis and Rating System (BARS) has been in use in over 25 states
since the early 1970’s. This system is built using vintage FORTRAN and is difficult and
expensive to maintain. It is also difficult to update the software to keep it current with annual
bridge design and rating specification changes. Both BARS and the AASHTO Bridge Design
System (BDS) use a structured, formatted input, command language input or text based menu
system to allow the user to interact with the program. In today’s modern bridge office
environment, designers and bridge raters demand a graphical and intuitive software interface in
order to work efficiently and productively. Neither BARS nor BDS enabled the user to
interactively enter and review input data and output results in a friendly, productive manner.
When the Federal Highway Administration (FHWA) mandated that the states begin to use the
Load Factor method (LFD) instead of earlier methods for load rating, this implied major changes
to the AASHTO systems, especially in the amount and type of data to be collected. This made it
necessary to decide whether to attempt to update the old software, or to take the opportunity to
build a more modern system.

A modern system architecture was proposed to support both the rating and design processes of
the bridge engineer. A Functional Requirements document was written to address the bridge
engineers’ business processes, functional and analytical requirements, system architectural
requirements and the major design elements of the system. Following this step, a functional
prototype of the new system was developed. Based on comments on the prototype system the
final system was designed and is currently under development. Virtis and Opis will be delivered
in modules that address the prioritized needs of the states’ bridge design and rating engineers.
Software to support the most common bridge types will be delivered first followed by modules
to support the lesser common structures until the system is in place to design and load rate most
structure types and configurations representing approximately 80% to 85% of the nation’s
bridges.

For Virtis and Opis, the primary goal has always been, and continues to be, to develop the most
accurate, complete, rigorous, reliable, and durable software package for bridge load rating and
design, respectively, according to state and Federal standards. The users, Task Forces, and
developers have recognized that a state-of-the-art approach to standards, technology, licensing,
and development are necessary to accomplish this goal. The primary objectives which have been
defined in response to this goal are:

• Adopt an object-based architecture to enhance the reliability, efficiency, and
maintainability of the system.

• Maximize designer creativity and productivity, and the economy of new bridge designs,
by facilitating the swift creation and evaluation of a large number of design alternatives.

• Maximize load rating engineer productivity in reducing the huge backlog of unrated
bridges in the US, by speeding data entry and analysis.

• Broaden the business process models of load rating and design for better integration with
other systems and related business processes. This includes the more effective use of load
rating data in related systems such as routing and permit management, and includes the
support of management use of load rating data at a more aggregate level of analysis than
the single bridge.

• Satisfy Federal requirements to rate bridges using the Load Factor method, unless the
requirement is changed to support the new Load and Resistance Factor specification.

• Provide a high degree of user-friendliness for both rater and designer, recognizing the
differences between these disciplines in their needs.

The Virtis/Opis project is an ambitious undertaking that promises to deliver state-of-the-art
systems and high value to its licensees.

3. System overview

The Virtis/Opis architecture is comprised of four primary layers shown below in Fig. 1: User
Interface, Domain, Data Management, and Database. Each layer has responsibilities for
communication and data exchange with adjacent layers and is insulated from other layers. Each
layer encapsulates data and functionality with clear, well-defined responsibilities.

The User Interface (Ui) layer is responsible for interacting with the user, or the outside world in
the case of interacting with third-party software. This layer contains three components:

1. Virtis/Opis GUI module - This is the visible Graphical User Interface with which the
user will directly interact for describing bridges for storage in the BridgeWare
database and for performing rating, design and analysis.

2. Analytical (Import/Export) modules - These modules are responsible for: (1)
importing bridge description data files from other applications into the BridgeWare
database, (2) exporting data for analysis programs such as BRASS, (3) controlling
analysis programs such as BRASS. This component also includes future analysis,
design, and rating modules.

3. Third-Party modules - These modules are software components that are integrated
with the Virtis/Opis GUI to perform special analysis (such as to replace or
supplement BRASS for rating or design) or may be completely independent of the
Virtis/Opis GUI module but use the Virtis/Opis Domain for accessing the
BridgeWare database.

Fig. 1. System Overview

Certain parts of the GUI module, indicated in the diagram as “GUI API”, may expose
functionality to the outside world for use by third-party developers. This API enables software
communication between Virtis/Opis and other applications such as Routing programs.

The Domain (Do) layer is responsible for organizing the bridge data and presenting it to the User
Interface layer as a bridge with all the correct relationships among the bridge’s components. The
domain enforces consistency and “business rules” for all bridge data. Since it is designed to
provide convenient navigation according to the semantic structure of the data, the domain is the
primary source of data for all GUI and analytical objects. The next section of this paper describes
the domain model in more detail.

The Data Management (Dm) layer is responsible for controlling data source access and
management of Data Encapsulation (De) objects, which provide attribute values and associated
data dictionary information for use by any layer of the system.

Data Management Classes
(Dm Objects) Data Cache Classes

Domain Classes
(Do Objects)

Domain API

Disk StorageRDBMS

File System Classes

RDBMS Classes
(Db Objects)

ODBC

3rd Party
Development

DeType
Objects

Analysis Classes
(Engine/Import/Export)

Analysis
API

DeType
Objects

GUI Classes
(Ui Objects)

Windows Controls

Windows
API

Virtis/Opis GUI

ActiveX
Controls

DeType
Objects

GUI
API

Data Encapsulation
Collection Classes

(De Objects)

Data
Encapsulation

Classes
(DeType
Objects)

The system as a whole is comprised of several thousand C++ classes. Part of the GUI and all of
the Domain implement a programming interface compliant with Microsoft’s Component Object
Model (COM). This interface can be used within any programming environment that supports
COM and Automation. This includes Visual Basic and any product that supports Visual Basic
for Applications such as Microsoft Excel and Word.

4. Integrated domain model

Both the database and a part of the graphic user interface are organized according to a logical
model describing the aspects of a structure which are important for rating and design. Using the
methods of object-oriented analysis (Booch, 1994), this logical model takes the form of a domain
model. The domain model is not only a software design tool, but it also has evolved into an
important part of the system itself, as the collection of objects responsible for enforcing the
functional, geometric, and analytical integrity of the data describing each bridge.

Fig. 2 shows a small portion of the domain model, focusing on the static description of steel
bridges and the load rating event. The full domain model also includes decks, culverts,
prestressed and reinforced concrete beams, substructures, appurtenances, geographic location,
security, bridge management, analytical results, and libraries.

As is evident from the diagram, the domain model results from a thought process of
disassembling a bridge into the smallest relevant components. Care is taken to organize the
components in a way that reflects their roles and structural behavior. AASHTO bridge design
specifications were especially useful in classifying components and in the choice of standard
terminology. Other existing systems were also consulted to ensure that the new system would be
logically compatible with them as much as possible. The objects of each class in the domain
model have their own specific role to play in the calculations for structural analysis and
specification checking. Most of them also have a visual representation in the schematic graphic
diagrams presented in the user interface, and most have their own data attributes to be stored in
the system’s relational database.

As the diagram indicates, each bridge is a collection of structures, and each structure is a
collection of members. There are many different types of members, and each has its own role to
play in the structural system’s effort to resist the many kinds of applied loads. There are also
many forms of physical implementation of members, some of which have a further breakdown of
member components, such as the plates and stiffeners on a built-up steel beam.

An important feature of the domain model is a location-definition pattern. The functional
requirements and location of an object are stored and managed separately from the physical
definition of the object. For example, the location of each girder is represented in the domain
model in the girder class, which inherits from superstructure member, a part of the superstructure
definition. The physical characteristics of the girder are provided by steel beam definition, which
inherits from spanning member definition. This separation of function and implementation
allows the definition of a physical girder to be re-used in many places within the same structure
definition. For bridge design, this same feature also allows the storage and comparison of
multiple alternative definitions for the same member.

Fig. 2. Domain Model

Substructure Alternative

Steel Cross-Section
Shear Connector Field

Rating Event
Design Event

Unified Modeling Language Symbols

Bridge Bridge
Alter-
native

Superstructure
Substructure

1

0..n

1
0..n

Class

One-to-many
composition

One-to-many
aggregation

Inheritance

Many-to-many with
one-way navigation

1
0..n

0..n
0..n

Structure
Definition

Super-
structure
Definition

Bearing Line Super-Sub Interface

Bearing Definition
Support

Super-
structure
Member

Diaphragm
Wind Brace
Frame Leg

Super-
structure
Spanning
Member

Girder
Floorbeam
Stringer
Slab
Truss
Truss-
Floorbeam
Arch
Frame

Super-
structure
Spanning
Member
Alternative

Live Load Distribution Factor Range
Analysis Point
Haunch Range

Superstructure Member Span
Member Connection Location

Member Connection Definition

Member Sidewalk Live Load
Temperature Load
Temperature Gradient Load
Member Concentrated Load
Member Distributed Load
Structure Definition Distributed Load
Wind Load

Load Case
Load Scenario Load Scenario Item

Construction Stage

Spanning
Member
Definition

Beam
Definition

Steel
Beam
Definition

Steel Rolled I-Beam
Steel Closed Box Beam
Steel Built-Up I-Beam
Steel Built-Up Riveted I-Beam
Steel Cross-Section Based Beam

Steel Cross-
Section Range

Steel Splice Location
Steel Splice Definition

Weld At Point

Steel Cross-
Section Element

Steel
Compo-
nent

Steel Section Property
Steel Rolled Shape
Steel Transverse Stiffener
Steel Angle Connection

Steel
Plate

Steel Threaded Bar
Steel Eye Bar

Steel Flange Plate
Steel Web Plate
Steel Cover Plate
Steel General Plate
Steel Longitudinal
Stiffener Plate

Bolt/Rivet Field
Weld

Event

Approval Event

Vehicle Rating Library Vehicle

Library Vehicle Axle

1
0..n 1

0..n

1
0..n 1

0..n

1
0..n

1
0..n

1
0..n

1
0..n

1
0..n
0..n

1
0..n

1
0..n

1
0..n

1
0..n

1
0..n

1
0..n

1
0..n

1
0..n

1
0..n

1
0..n

1
0..n

1
0..n

1
0..n

1
0..n

1
0..n

1
0..n

1
0..n

1
0..n

1
0..n

1
0..n

1
0..n

1
0..n

1
0..n

1
0..n

1
0..n

1
0..n

1
0..n

1
0..n

1
0..n

1
0..n

1
0..n

1
0..n

1 0..n

0..n 0..n

1
1

1 0..n

1

0..n

1

0..n

Group

0..n
0..n

0..n
0..n

1
0..n

0..n

1
0..n

1

Steel Beam Assembly

1

0..n

Superstructure Alternative

Classes representing function and implementation are related to each other by means of
associative classes, which normally have “alternative” or “assembly” in their names. Often these
classes have relatively few input data items, but relatively many output items. For example, the
superstructure spanning member alternative class makes it quick and easy for a user to apply a
spanning member definition to a given spanning member with very little work. However,
features are provided for the definition of distribution factors2 and points of interest3, both
allowing the user to analyze in as much detail as desired, how the member definition can be
expected to perform when used in the indicated position.

Another important feature of the domain model is its ability to represent either of the two most
common ways of describing a bridge superstructure. Most existing load rating packages support
cross-section-based input, the ability to describe the cross-section of a beam at each of a finite
number of points. This type of input requires the engineer to abstract the beam — either as built
(rating) or as conceived (design) — into these cross sections as a part of data definition. This
requires professional judgement and is error prone. When used conservatively, it has a broad
range of application. The alternative form is schedule-based input, where all the components of
the beam are defined individually. Here the information entered into the system is expressed in
much the same way as it is represented on the plans. The data requirements and associated
graphical interfaces parallel the physical description of the bridge. The importance of this
mapping is that the abstraction of the bridge into discrete cross sections is performed within the
software; this requires less judgement and is more reliable. Moreover, data may be entered by
technical personnel familiar with bridges, but with less training required to provide the
abstractions required by the cross-section-based method.

Usually, schedule-based input provides a more precise description of the beam, but requires
more data-entry. However, it achieves broad applicability without the need for as many
conservative simplifying assumptions. Also, because it is more generic, the schedule-based
process is less closely tied to the underlying analytical engine which performs the load rating or
design calculations. Both approaches can yield the same results under the same assumptions, but
they diverge when assumptions and analytical requirements become more complex, or different
analytical processes are employed.

The domain model in Fig. 2 also shows a part of the more dynamic relationship that is used when
a bridge is rated. In the Virtis/Opis user interface, users are allowed to combine bridges into
groups for any purpose and study the group with respect to one or many vehicles. This
combination offers some powerful capabilities, such as:

1. Design or rate a bridge for several vehicles.

2. Study several design alternatives for several vehicles.

3. Rate a set of bridges (grouped along a route) for an overload permit vehicle.

2 Distribution factors abstract a 3-D bridge system into a 1-D mathematical model that represents the behavior of a
member in the system. These factors are important to the entire analysis.

3 Location on a bridge where the effects of load are expected to be critical or of special interest due to construction
considerations, specific as-built details, etc.

4. Perform strength evaluation for reporting standardized values to bridge management
agencies/entities at the local and national level.

5. Study groups of bridges with particular design details that could be of concern, e.g., weld
details.

6. Study bridge management decision-making affecting the performance and life cycles of
groups of bridges, such as the effect of a design/rating specification modification, or the
effect of policy alternatives on the health of a bridge inventory.

Within the graphic user interface, this feature is supported by allowing users to drag bridges into
folders, which are then analyzed as a unit.

5. Graphic user interface

Load rating can use a visual representation of a bridge as a way of detecting data entry errors or
modeling deficiencies, while bridge design can use the same visual images to help the designer
to understand the full implications of his creations. Both activities can also use visualizations of
structural behavior to understand how an existing structure or a new design can be improved.
Finally, both applications are a part of the same life cycle: once a new bridge is properly
modeled in the design process, the same data remain available for subsequent load rating after
the bridge is built.

An important Virtis project objective is to make load rating as easy as possible, especially the
time-consuming initial creation of the structural model. Libraries of standard vehicles, loads,
steel and prestressed shapes, load and resistance factors, materials, parapets, and other bridge
components allow bridge models to be built quickly in a drag-and-drop manner. As a bridge
model is constructed, a graphical schematic framing plan, elevation view, cross-section view,
and other schematics provide feedback and make common types of errors more apparent. All or
part of a bridge can be copied to another bridge. The ability to copy and paste bridges, members,
and other components at any level is especially powerful in reducing data entry time.

In addition to the features described above for Virtis, Opis will provide a set of output reports to
help the designer understand the performance of a new bridge. A tree-structured graphical
representation of the AASHTO Load and Resistance Factor Design specification indicates
whether each article is passed or violated, and provides access to the detailed calculations for the
bridge as well as the specification text. A suite of X-Y plots shows moments, shears, deflections,
actual vs. capacity envelopes, influence lines, and other valuable information.

Fig. 3 is a typical X-Y plot that illustrates the results from the structural analysis. Fig. 4
illustrates the results from detailed structural specification checking. The structural specifications
that guide bridge design in the US are approximately 1100 pages. These specifications involve a
detailed prescription for structural analysis and performance requirements. Virtis and Opis
provide the computations that are performed at every level and permit the user to drill down or
query conveniently for all relevant details, in a format similar to what could be performed with
hand computations.

Fig. 3. A typical Opis plot of structure performance

Fig. 4. Navigating to the details of specification checking

6. Interface with BRASS

Another objective of both Virtis and Opis is to be able to check a load rating calculation by
applying more than one software package to perform the calculations independently. An obvious
way to accomplish this is to define a standardized interface through which third-party load rating
calculation packages can withdraw bridge data and deposit the results. BRASS, the analysis
application that is being delivered with Virtis and Opis, is the first such third-party package and
provides a working example of how the interface is intended to be used.

The interfaces to BRASS (and other applications) exploit a common object-oriented
development technique: the use of a “wrapper” or “adapter” (Gamma et al, 1995) class which
marries the object-oriented Virtis/Opis software with the decidedly non-object-oriented existing
base of structural software. This application-programming interface (API) will be an open and
published portion of the AASHTO system.

The interface to BRASS is bi directional. First, the input data are exported to BRASS using an
ASCII metafile format. This file structure uses the same BRASS commands that would be used
if BRASS were executed outside of the Virtis/Opis environment. The commands are well
documented and this intermediate step provides a checkpoint for data definition between the two
systems. The input data requirements are very small, usually less than one Kbyte. The typical
user is not concerned with this intermediate step.

To accomplish this export step, the application developer creates objects that read the Virtis/Opis
domain model and output the data in a form which the third-party package can read. The BRASS
example included with the system provides a template for this step. For external systems that are
already object-oriented and can access COM interfaces, this intermediate step can be skipped by
accessing the domain directly. When necessary, the third-party developer can also provide data
entry screens for information specific to the program, which are then available to the user in
Virtis/Opis at appropriate places.

When the external analysis is complete, output data from the third-party package are passed to
Virtis/Opis, using classes supplied for this purpose. The output is voluminous, typically several
tens of megabytes. This includes many X-Y plots, and detailed capacity and specification
checking information. Virtis/Opis provides the User Interface features necessary to view the
output data. Many of the data may not be usefully stored in the long term and are classified as
semi persistent data. Such data are very useful for on-line studies but can be easily regenerated
based on the definition of the bridge and vehicle characteristics, and therefore need not be
permanently stored. Storage options for these data will be available.

7. International Considerations

The architecture of Virtis/Opis is open and general. The ability to interface with alternative
analytical engines extends to the use of design codes from other countries, when needed. The
system complies with Microsoft guidelines for internationalization, which facilitate the
translation to other languages and the use of local conventions for data representation. All
measurements are stored in SI units, with several alternatives for metric and English display
conventions.

8. Conclusions and future directions

Virtis and Opis are designed to be powerful tools to serve an existing critical need, exploiting
object-oriented technology, client-server databases, and modern graphic user interfaces to
significantly advance the state-of-the-practice of design and load rating in the United States.
With the generality of the object-oriented design of the systems, they have the potential to
become a core infrastructure, a nucleus around which tools that are even more powerful can be
built.

For example, having all of its data in a standardized accessible form makes it economical within
Virtis to build powerful new features for management of the load rating process and for support
of routine business activities such as policy development and overload permit application review.
In order to function as a decision support tool for the diverse overload permit management
processes that exist in every state, Virtis once again will use object-oriented techniques to build a
standardized interface to communicate with outside systems. This interface will support the
construction of a model of the candidate truck (from the permit application) and a model of the
route the truck will take (from the state’s existing geographic information system). It then
prepares the load rating information and results in Virtis for review by a load rating engineer,
who can then efficiently decide whether to approve the application.

The same tools, which the rating engineer uses to describe an existing bridge, will be used by the
design engineer to describe his concept of a new bridge, which can then be evaluated.
Eventually, AASHTO hopes to evolve Opis into a true engineer-in-the loop design package,
including automated capabilities to search and select design variables which optimize
performance requirements. This long-range vision includes a new object-oriented engine for
analysis and specification checking, for both superstructures and substructures.

9. References

Booch, G., (1994), Object-Oriented Analysis and Design with Applications, Addison-Wesley,
New York, NY, USA, 1994.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J., (1995), Design Patterns: Elements of
Reusable Object-Oriented Software, Addison-Wesley, New York, NY, USA, 1995.

10. Authors

Paul D. Thompson, 2425 Hawken Drive, Castle Rock, CO, 80104, USA.

James A. Duray, Michael Baker Jr., Inc., Airport Office Park, Building 3, 420 Rouser Road, Coraopolis, PA, 15108,
USA.

Jay A. Puckett, BridgeTech, Inc., 302 South Second, Suite 201, Laramie, WY, 82070, USA.

Jeffrey J. Campbell, Michael Baker Jr., Inc., Airport Office Park, Building 3, 420 Rouser Road, Coraopolis, PA,
15108, USA.

The authors wish to acknowledge the contributions of the Virtis Task Force, chaired by Don Flemming of
Minnesota DOT; the Opis Task Force, chaired by Jim Roberts of Caltrans; Dave Pope of Wyoming DOT; Kurt
Johnson of AASHTO; and the many engineers who have contributed to the project through their work on the various
Technical Advisory Groups.

